Advertisement

Representation of PVT Data by Means of a Universal State Equation for Simple Pure Fluids

  • O. B. Verbeke
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 18)

Abstract

A universal equation of state for fluids is proposed. This equation features the behavior of the ideal gas at zero density, the scaling law behavior near the critical point, and the hard-sphere gas properties at high temperatures. It has been successfully applied on both low- and moderate-temperature data of hydrogen.

Keywords

Universal Equation Critical Constant Vapor Pressure Curve Hydrogen Hydrogen Vapor Pressure Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, and H. W. Woolley, Tables for Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam, Pergamon Press, Oxford (1960).Google Scholar
  2. 2.
    L. S. Levitt, J. Chem. Phys., 34: 1440 (1961).CrossRefGoogle Scholar
  3. 3.
    R. D. McCarty and R. B. Stewart, in: 2nd Symposium on Thermophysical Properties, Princeton University, ASME, New York (1962), p. 107.Google Scholar
  4. 4.
    E. A. Thachenko, E. M. Holleran, and R. A. Moses, Cryogenics, 4 (1): 12 (1964).CrossRefGoogle Scholar
  5. 5.
    R. D. Goodwin, NBS J. Res., 73A: 585 (1969).Google Scholar
  6. 6.
    R. D. Goodwin and R. Prydz, NBS J. Res., 76A (2): 81 (1972).Google Scholar
  7. 7.
    B. Widom and J. S. Rowlinson, J. Chem. Phys., 52: 1670 (1970).CrossRefGoogle Scholar
  8. 8.
    M. Vincentini-Missoni, J. M. H. Levelt-Sengers, and M. S. Green, Phys. Rev. Lett., 14: 623 (1965).CrossRefGoogle Scholar
  9. 9.
    M. S. Green, M. J. Cooper, and J. M. H. Levelt-Sengers, Phys. Rev. Lett., 26 (9): 492 (1971).CrossRefGoogle Scholar
  10. 10.
    O. B. Verbeke, V. Jansoone, R. Gielen, and J. De Boelpaep, J. Phys. Chem., 73: 4076 (1969).CrossRefGoogle Scholar
  11. 11.
    V. Jansoone, H. Gielen, J. De Boelpaep, and O. B. Verbeke, Physica, 46: 213 (1970).CrossRefGoogle Scholar
  12. 12.
    O. B. Verbeke, to be published in Physica.Google Scholar
  13. 13.
    B. Widom, J. Chem. Phys., 43: 3898 (1965).CrossRefGoogle Scholar
  14. 14.
    R. D. Goodwin, NBS Rept. 9100 (1965).Google Scholar
  15. 15.
    D. E. Diller, Cryogenics, 11: 186 (1971).CrossRefGoogle Scholar
  16. 16.
    O. B. Verbeke, to be published in Cryogenics, 10.Google Scholar
  17. 17.
    O. B. Verbeke, Cryogenics, 10: 486 (1970).CrossRefGoogle Scholar
  18. 18.
    A. Michels, J. M. H. Levelt-Sengers, and W. De Graaf, Physica, 24: 659 (1958).CrossRefGoogle Scholar
  19. 19.
    R. D. Goodwin, D. E. Diller, H. M. Roder, and L. A. Weber, NBS J. Res., 67A: 173 (1963).Google Scholar
  20. 20.
    W. De Graaf, Ph.D. Dissertation, Gemeente Universiteit, Amsterdam (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • O. B. Verbeke
    • 1
  1. 1.University of LeuvenLeuvenBelgium

Personalised recommendations