Liquid Flow Rates of Superfluid Helium II During Thermomechanical Pumping Through Porous Media

  • T. H. K. Frederking
  • A. Elsner
  • G. Klipping
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 18)


Porous media are used in low-temperature systems for heat exchangers [12], flow control [34], and thermomechanical devices, such as superleaks [5]. In conjunction with an applied temperature gradient the porous medium serves as a thermomechanical pump.


Porous Medium Liquid Flow Rate Superfluid Helium Porous Medium Flow Klinkenberg Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Wheatley, R. E. Rapp, and R. T. Johnson, J. Low Temp. Phys., 4: 1 (1971).CrossRefGoogle Scholar
  2. 2.
    T. O. Niinikoski, Cryogenics, 11: 232 (1971).CrossRefGoogle Scholar
  3. 3.
    P. M. Selzer, W. M. Fairbank, and C. W. F. Everitt, in: Advances in Cryogenic Engineering, Vol. 16, Springer Science+Business Media New York (1971), p. 277.Google Scholar
  4. 4.
    A. Elsner and G. Klipping, in: Advances in Cryogenic Engineering, Vol. 14, Springer Science+Business Media New York (1969), p. 436.Google Scholar
  5. 5.
    F. A. Staas and A. P. Severijns, Cryogenics, 9: 422 (1969).CrossRefGoogle Scholar
  6. 6.
    H. A. Notarys, Phys. Rev. Letters, 22: 1240 (1969).CrossRefGoogle Scholar
  7. 7.
    H. Kojima, W. Veith, S. J. Putterman, E. Guyon, and I. Rudnick, Phys. Rev. Letters, 27: 714 (1971).CrossRefGoogle Scholar
  8. 8.
    M. Chester and R. Ziff, J. Low Temp. Phys., 5: 285 (1971);CrossRefGoogle Scholar
  9. D. R. Williams and M. Chester, Phys. Rev., A4: 707 (1971).CrossRefGoogle Scholar
  10. 9.
    G. B. Hess, Phys. Rev. Letters, 27: 977 (1971).CrossRefGoogle Scholar
  11. 10.
    D. H. Liebenberg, Paper 1.16 presented at IIR Congress, Comm. I, Washington, D.C. (1971).Google Scholar
  12. 11.
    J. S. Langer and M. E. Fisher, Phys. Rev. Letters, 19: 560 (1967).CrossRefGoogle Scholar
  13. 12.
    P. H. Roberts and R. J. Donnelly, Phys. Rev. Letters, 24: 367 (1970).CrossRefGoogle Scholar
  14. 13.
    W. E. Keller, Helium-3 and Helium-4, Springer Science+Business Media New York (1969).Google Scholar
  15. 14.
    J. Wilks, Liquid and Solid Helium, Oxford University Press, Clarendon, England (1967).Google Scholar
  16. 15.
    F. C. Vote, J. E. Myers, H. B. Chu, and T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 16, Springer Science+Business Media New York (1971), p. 393.Google Scholar
  17. 16.
    A. E. Scheidegger, The Physics of Flow Through Porous Media, Macmillan Book Company, New York (1960).Google Scholar
  18. 17.
    P. C. Carman, Trans. Inst. Chem. Engrs., 15: 150 (1937).Google Scholar
  19. 18.
    M. J. R. Willie and A. R. Gregory, Ind. Eng. Chem., 47: 1379 (1955).CrossRefGoogle Scholar
  20. 19.
    S. Ergun, Chem. Eng. Progr., 48: 89 (1952).Google Scholar
  21. 20.
    L. J. Klinkenberg, Drilling and Production Practices, API (1941), p. 200.Google Scholar
  22. 21.
    A. Elsner, Ph.D. Dissertation, Freie Universität Berlin, Berlin, West Germany (1969).Google Scholar
  23. 22.
    W. E. Keller and E. F. Hammel, Physics, 2: 221 (1969).Google Scholar
  24. 23.
    W. M. van Alphen, G. J. Hastaren, R. deBruyn Ouboter, and K. W. Taconis, Phys. Letters, 20: 474 (1966).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • T. H. K. Frederking
    • 1
  • A. Elsner
    • 2
  • G. Klipping
    • 3
  1. 1.University of California at Los AngelesLos AngelesUSA
  2. 2.Max-Planck-Institut für PlasmaphysikGarchingGermany
  3. 3.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations