Low-Temperature Flow and Fracture Behavior of Tantalum

  • J. Nunes
  • A. A. Anctil
  • E. B. Kula
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 10)


Previous studies on the mechanical behavior of tantalum have dealt with the effects of testing temperature [1–4], alloying elements [5–7], notch sensitivity [8], grain size [9], and twinning [10], These studies have provided extensive information which has been significant toward obtaining a better understanding of the mechanical properties of this metal. However, further studies concentrated upon the basic tensile plastic flow and fracture parameters at low testing temperatures are needed to obtain a more comprehensive understanding of such factors as the temperature dependence of flow stress, work-hardening, and fracture behavior. Also, since tantalum appears anomalous because of its lack of low-temperature brittleness compared to other body-centered cubic metals, a comparison of the flow stress and strain parameters with other metals of the same crystal structure may help to explain such an anomaly.


Flow Stress Fracture Behavior Hydrogen Embrittlement Lower Yield Point Specimen Gauge Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Bechtold, Acta Met. 3, 249 (1955).CrossRefGoogle Scholar
  2. 2.
    J. W. Pugh, Trans. A. S. Metals 48, 677 (1956).Google Scholar
  3. 3.
    M. Schussler and J. S. Brunhouse, Trans. Met. Soc. AIME 218, 893 (1960).Google Scholar
  4. 4.
    W. N. Armstrong and J. A. H. Lund, Can. Mining Met. Bull. 45, 504 (1961).Google Scholar
  5. 5.
    R. H. Myers, Metallurgia 42, 3 (1950).Google Scholar
  6. 6.
    F. F. Schmidt, F. C. Holden, H. K. Ogden, and R. I. Jaffee, Trans. Am. Soc. Metals 53, 805 (1961).Google Scholar
  7. 7.
    A. G. Imgram, E. S. Bartlett, and H. R. Ogden, Trans. Met. Soc. AIME 227, 131 (1963).Google Scholar
  8. 8.
    A. G. Imgram, F. C. Holden, H. R. Ogden, and R. I. JafTee, Trans. Met. Soc. AIME 221, 517 (1961).Google Scholar
  9. 9.
    R. C. Koo, “Grain-Size Effects on the Deformation of Tantalum at Low Temperatures,” J. Less-Common Metals 4, 138 (1962).CrossRefGoogle Scholar
  10. 10.
    C. S. Barrett and R. Bakish, Trans. Met. Soc. AIME 212, 122 (1958).Google Scholar
  11. 11.
    J. Nunes and F. R. Larson, Proc. ASTM 61, 1349 (1961).Google Scholar
  12. 12.
    T. S. DeSisto and F. L. Carr, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 577.Google Scholar

Copyright information

© Plenum Press, New York 1965

Authors and Affiliations

  • J. Nunes
    • 1
  • A. A. Anctil
    • 1
  • E. B. Kula
    • 1
  1. 1.U.S. Army Materials Research AgencyWatertownUSA

Personalised recommendations