Calculation of Gaseous Heat Conduction in Dewars

  • R. J. Corruccini
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 3)


The use of high vacuum as an element of thermal insulation is familiar through the example of the cryogenic vessel. In such devices it is not always practical to achieve such a high vacuum as to make the gaseous conduction of heat negligible compared to radiation. Indeed, when both boundaries are at a low temperature—as in a vessel for liquid hydrogen or helium when surrounded by liquid nitrogen or liquid air—the gaseous conduction may predominate. Consequently the calculation of such conduction is a necessary part of the engineering design of vacuum insulations.


Silica Aerogel Thermal Conductivity Coefficient Accommodation Coefficient Specific Heat Ratio Vacuum Insulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Company, Inc., New York, New York (1938).Google Scholar
  2. 2.
    S. Dushman, Vacuum Technique, Wiley-Chapman and Hall, New York, New York (1949).Google Scholar
  3. 3.
    S. S. Kistler, J. Phys. Chem. 39 79 (1935).CrossRefGoogle Scholar
  4. 4.
    J. F. White, Chem. Eng. Prog. 44, 647 (1948).Google Scholar
  5. 5.
    B. W. Birmingham, E. H. Brown, C. R. Class, and A. F. Schmidt, J. Res. NBS, 58, 243 (1957).Google Scholar
  6. 6.
    NBS Circular 564 (1955).Google Scholar
  7. 7.
    J. K. Roberts, Proc. Roy. Soc. A135, 195 (1932).Google Scholar
  8. 8.
    H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Oxford Press, England (1952).Google Scholar
  9. 9.
    W. H. Keeson and G. Schmidt, Physica 3, 590, 1085 (1936);CrossRefGoogle Scholar
  10. 9a.
    W. H. Keeson and G. Schmidt, Physica 4, 828 (1937).CrossRefGoogle Scholar
  11. 10.
    M. Knudsen, Ann. d. Phys. 34, 593 (1911).CrossRefGoogle Scholar
  12. 11.
    F. Soddy and A. J. Berry, Proc. Roy. Soc., A84 576 (1911).Google Scholar
  13. 12.
    B. Raines, Phys. Rev. 56, 691 (1939).CrossRefGoogle Scholar
  14. 13.
    H. H. Rowley and K. F. Bonhoeffer, Z. Phys. Chem., B21, 84 (1933).Google Scholar
  15. 14.
    I. Amdur, M. M. Jones, and H. Pearlman, J. Chem. Phys. 12, 159 (1944).CrossRefGoogle Scholar
  16. 15.
    I. Amdur, J. Chem. Phys. 14, 339 (1946).CrossRefGoogle Scholar

Copyright information

© Plenum Press, Inc., New York 1960

Authors and Affiliations

  • R. J. Corruccini
    • 1
  1. 1.CEL National Bureau of StandardsBoulderUSA

Personalised recommendations