Modulation of Acetylcholine Turnover in Brain Regions

  • A. Nordberg
  • A. Sundwall
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


There seems to be as yet no general agreement on the basal steady state level of A Ch in the brain. Values ranging from 7–31 nmol/g have been reported (6). Variables such as method of sacrifice, extraction and analysis, as well as activity and time of day have been implicated as the factors responsible (Table 1). From the time of decapitation until the brain tissue is homogenized and extracted acetylcholinesterase (A ChE) and choline acetyltransferase (CAT) may cause changes in the A Ch level. The use of the microwave technique as a rapid method of sacrifice and enzyme inactivation, originally introduced by Stavinoha and coworkers in 1970 (15), has increased progressively during recent years and has greatly reduced the time taken for enzyme inactivation. The aim of the present communication has been to study the influence of the time taken to enzyme inactivation on turnover of ACh in different brain regions.


Brain Region Microwave Irradiation Sodium Pentobarbital Specific Radioactivity Choline Acetyltransferase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, R. L., Roch, M. and Jenden, D.J. (1973): Proc. West. Pharmacol. Soc. 16:188–190.Google Scholar
  2. 2.
    Domino, E. F., Vasko, M.R. and Wilson, A.E. (1976): Life Sci. 18:361–376.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanin, I., Massarelli, R. and Costa, E. (1970): In: Drugs and Cholinergic Mechanisms in the CNS, (Eds.) E. Heilbronn and A. Winter, Fors. Forsk., Almqvist & Wiksell, Stockholm, pp. 33–54.Google Scholar
  4. 4.
    Holmstedt, B., Lundgren, G. and Sundwall, A. (1963): Life Sci. 10:731–736.PubMedCrossRefGoogle Scholar
  5. 5.
    Karlen, B., Lundgren, G., Lundin, J. and Holmstedt, B. (1977): Life Sci. (in press).Google Scholar
  6. 6.
    Nordberg, A. (1977): Acta Physiol. Scand. Suppl. 445:1–51.PubMedGoogle Scholar
  7. 7.
    Nordberg, A. (1977): J. Neurochem. (submitted)Google Scholar
  8. 8.
    Nordberg, A. and Sundwall, A. (1975): In: Cholinergic Mechanisms, (Ed.) P. G. Waser, Raven Press, New York, pp.229–239.Google Scholar
  9. 9.
    Nordberg, A. and Sundwall, A. (1976): Biochem. Pharmacol. 25: 135–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Nordberg, A. and Sundwall, A. (1976): Acta Physiol. Scand. 98: 307–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Nordberg, A. and Sundwall, A. (1977): Acta Physiol. Scand. 99: 336–344.PubMedCrossRefGoogle Scholar
  12. 12.
    Richter, D. and Crossland, J. (1949): Amer. J. Physiol. 159:247–255.PubMedGoogle Scholar
  13. 13.
    Saelens, J.K., Simke, J. P., Allen, M.P. and Conroy, C.A. (1973): In: Methods of Neurochemistry, Vol.4 (Ed.) R. Fried, Marcel Dekker, New York, pp. 69–95.Google Scholar
  14. 14.
    Stavinoha, W.B. and Ryan, L. C. (1965): J. Pharmacol. Exp. Ther. 150:231–235.Google Scholar
  15. 15.
    Stavinoha, W. B., Pepelko, B. and Smith, P.W. (1970): Pharmacologist 12:257.Google Scholar
  16. 16.
    Stavinoha, W.B., Weintraub, S. T. and Modak, A.T. (1973): J. Neurochem. 20:361–371.PubMedCrossRefGoogle Scholar
  17. 17.
    Tobias, J.M., Lipton, M.A. and Lepinat, A.A. (1946): Proc. Soc. Exp. Biol. (New York) 61:51–54.Google Scholar
  18. 18.
    Toru, M. and Aprison, M.H. (1966): J. Neurochem. 13:1533–1544.PubMedCrossRefGoogle Scholar
  19. 19.
    Trabucchi, M., Cheney, D.L., Hanin, I. and Costa, E. (1975): J. Pharmacol. Exp. Ther. 194:57–64.Google Scholar
  20. 20.
    Zilversmit, D.B. (1960): Amer. J. Med. 29:832–848.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • A. Nordberg
    • 1
  • A. Sundwall
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmacy, Biomedical Center, Uppsala and Research DepartmentAB Kabi, FackStockholmSweden

Personalised recommendations