Advertisement

Drug Stimulation of Acetylcholine Output from the Cerebral Cortex

  • G. Pepeu
  • P. Mantovani
  • F. Pedata
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)

Abstract

It is assumed that ACh output from brain regions is an indication of the activity of the cholinergic nerve endings surrounding or underlying the collecting site. Changes in ACh output in vivo are, therefore, believed to indicate variations in the nerve flow within the cholinergic fibers. A number of drugs increase ACh output from the brain. They belong to several groups, including muscarinic anticholinergic, convulsants and drugs acting on dopaminergic receptors (25). More recently, some phospholipids have also been shown to stimulate ACh output from the cerebral cortex (1, 17).

Keywords

Cerebral Cortex Ringer Solution Anticholinergic Drug AChE Inhibitor Septal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaducci, L., Mantovani, P. and Pepeu, G. (1976): Brit. J. Pharmacol. 56:379P-380P.Google Scholar
  2. 2.
    Ansell, G.B. and Spanner, S. (1971): Biochem. J. 122:741–750.PubMedGoogle Scholar
  3. 3.
    Bartolini, A. and Pepeu, G. (1967): Brit. J. Pharmacol. 31:66–73.PubMedGoogle Scholar
  4. 4.
    Berteels-Meeuws, M.M. and Polak, R. L. (1968): Brit. J. Pharmacol. 33:368–380.Google Scholar
  5. 5.
    Bourdois, P.S., Mitchell, J.F. and Szerb, J. C. (1971): J. Neurochem. 19:1189–1193.CrossRefGoogle Scholar
  6. 6.
    Bruni, A., Toffano, G., Leon, A. and Boarato, E. (1976): Nature (Lond.) 260:331–333.CrossRefGoogle Scholar
  7. 7.
    Dudar, J.D. and Szerb, J. C. (1969): J. Physiol. (Lond.) 203:741–762.Google Scholar
  8. 8.
    Giarman, N.J. and Pepeu, G. (1964): Brit. J. Pharmacol. 23:123–130.PubMedGoogle Scholar
  9. 9.
    Goth, A., Adams, H.R. and Knoohuizen, M. (1971): Science 173: 1034–1035.PubMedCrossRefGoogle Scholar
  10. 10.
    Illingworth, D. R. and Portman, O. W. (1972): Biochem. J. 130: 557–567.PubMedGoogle Scholar
  11. 11.
    Jacobovitz, D.M. and Palkovits, M. (1974): J. Comp. Neurol. 157:13–22.Google Scholar
  12. 12.
    Jonah, M.M., Cerny, E.A. and Rahman, Y. E. (1975): Biochim. Biophys. Acta 401:336–348.Google Scholar
  13. 13.
    Johnson, A.M., Loew, D.M. and Vigouret, J.M. (1976): Brit. J. Pharmacol. 56:59–68.Google Scholar
  14. 14.
    Longoni, R., Mulas, A. and Pepeu, G. (1974): Brit. J. Pharmacol. 52:429P-430P.Google Scholar
  15. 15.
    Lundholm, B. and Sparf, B. (1975): Eur. J. Pharmacol. 32:287–292.PubMedCrossRefGoogle Scholar
  16. 16.
    MacIntosh, F. C. and Oborin, P.E. (1953): XIX Int. Physiol. Congr. Absts. 580–581.Google Scholar
  17. 17.
    Mantovani, P., Pepeu, G. and Amaducci, L. (1976): In: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems, (Eds.) G. Porcellati, L. Amaducci, and C. Galli, Plenum Press, New York.Google Scholar
  18. 18.
    Mantovani, P., Bartolini, A. and Pepeu, G. (1976): In: Nonstriatal Dopaminergic Neurons, (Eds.) E. Costa and G. Gessa, Raven Press, New York (in press).Google Scholar
  19. 19.
    Marek-Marsel, M. and Van Haesen, G.W. (1976): Brain Res. 109: 152–157.CrossRefGoogle Scholar
  20. 20.
    Mitchell, J. F. (1963): J. Physiol. (Lond.) 165:98–116.Google Scholar
  21. 21.
    Mongar, J. and Svec, P. (1972): Brit. J. Pharmacol. 46:741–752.Google Scholar
  22. 22.
    Mulas, A., Mulas, M.L. and Pepeu, G. (1974): Psychopharmacology (Berl.) 39:223–230.CrossRefGoogle Scholar
  23. 23.
    Nistri, A., Bartolini, A., Deffenu, G. and Pepeu, G. (1972): Neuropharmacology 11:665–674.PubMedCrossRefGoogle Scholar
  24. 24.
    Pepeu, G. and Bartolini, A. (1968): Eur. J. Pharmacol. 4:254–263.PubMedCrossRefGoogle Scholar
  25. 25.
    Pepeu, G. (1973): Prog. Neurobiol. 2:257–288.CrossRefGoogle Scholar
  26. 26.
    Pepeu, G., Mulas, A. and Mulas, M. L. (1973): Brain Res. 57: 153–164.PubMedCrossRefGoogle Scholar
  27. 27.
    Polak, R.L. (1965): J. Physiol. (Lond.) 181:144–152.Google Scholar
  28. 28.
    Polak, R.L. and Meeuws, M.M. (1966): Biochem. Pharmacol. 15: 989–992.PubMedCrossRefGoogle Scholar
  29. 29.
    Randic, M. and Padjen, A. (1967): Nature (Lond.) 215:990.CrossRefGoogle Scholar
  30. 30.
    Szerb, J. C. (1964): Canad. J. Physiol. Pharmacol. 42:303–314.Google Scholar
  31. 31.
    Szerb, J. C. and Somogyi, G.T. (1973): Nature (New Biol.) 241: 121–122.Google Scholar
  32. 32.
    Stadler, H., Kenneth, G.L., Gadea-Ciria, M. and Bartholini, G. (1973): Brain Res. 55:476–480.PubMedCrossRefGoogle Scholar
  33. 33.
    Toffano, G., Leon, A., Benvegnu, D., Boarato, E. and Azzone, G. F. (1976): Pharmacol. Res. Commun. 8:581–590.PubMedCrossRefGoogle Scholar
  34. 34.
    Tyson, C.A., VandeZande, H. and Green, D.E. (1976): J. Biol. Chem. 251:1326–1332.PubMedGoogle Scholar
  35. 35.
    Yamamura, H.I. and Snyder, S.H. (1974): Proc. Nat. Acad. Sci. (Wash.) 71:1725–1729.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • G. Pepeu
    • 1
  • P. Mantovani
    • 1
  • F. Pedata
    • 1
  1. 1.Department of PharmacologyUniversity of FlorenceItaly

Personalised recommendations