Advertisement

Uptake of Choline in Nerve Cell Cultures: Correlation with the Endogenous Pool of Choline

  • R. Massarelli
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)

Abstract

The uptake of choline (Ch) in primary (20) or clonal (9, 20) nerve cell cultures presents different kinetic parameters which have been suggested to belong to two distinct mechanisms of uptake. Much information has recently appeared in the literature on the influence of one of these parameters, the high affinity (HA) uptake of Ch on the regulation of ACh metabolism in synaptosomes (2, 8, 11, 33). Earlier works (7, 14, 32) based on partially purified choline acetyltransferase (CAT: E. C. 2.3.1. 6) have in fact suggested that the rate limiting step in ACh turnover seems to be independent of the activity of CAT and rather dependent on the availability of the two substrates intervening in ACh synthesis: acetyleoenzyme A (AcCoA) and Ch. These compounds would then regulate ACh metabolism by mass action (7).

Keywords

Nerve Cell Culture Wheat Germ Agglutinin Choline Uptake High Affinity Uptake Endogenous Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askari, A. (1966): J. Gen. Physiol. 49:1147–1160.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.PubMedGoogle Scholar
  3. 3.
    Booher, J. and Sensenbrenner, M. (1972): Neurobiology 2:97–105.PubMedGoogle Scholar
  4. 4.
    Bowery, N. G. and Neal, M.J. (1975): Brit. J. Pharmacol. 55:278P.Google Scholar
  5. 5.
    Diamond, I. and Milfay, D. (1972): J. Neurochem. 19:1899–1909.PubMedCrossRefGoogle Scholar
  6. 6.
    Freeman, J.J. and Jenden, D.J. (1976): Life Sci. 19:949–962.PubMedCrossRefGoogle Scholar
  7. 7.
    Glover, V.A.S. and Potter, L.T. (1971): J. Neurochem. 18:571–580.PubMedCrossRefGoogle Scholar
  8. 8.
    Guyenet, P., Lefresne, P., Bossier, J., Beaujouan, J. C. and Glowinski, J. (1973): Molec. Pharmacol. 9:630–639.Google Scholar
  9. 9.
    Haber, B. and Hutchison, H. T. (1976): In: Transport Phenomena in the Nervous System, (Eds.) G. Levi, L. Battistin and A. Lajtha, Plenum Press, New York, pp. 179–198.CrossRefGoogle Scholar
  10. 10.
    Haeffner, E.W. (1975): Eur. J. Biochem. 51:219–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Haga, T. and Noda, H. (1973): Biochim. Biophys. Acta 291:564–575.PubMedCrossRefGoogle Scholar
  12. 12.
    Jenden, D.J., Jope, R.S. and Weiler, M. H. (1976): Science 194:635–637.PubMedCrossRefGoogle Scholar
  13. 13.
    Kewitz, H. and Pleul, O. (1976): Proc. Nat. Acad. Sci. USA 73:2181–2185.PubMedCrossRefGoogle Scholar
  14. 14.
    Krell, R.D. and Goldberg, A.M. (1975): Biochem. Pharmacol. 24: 391–396.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajanian, G.K. (1973): J. Neurochem. 20:581–593.PubMedCrossRefGoogle Scholar
  16. 16.
    Lanks, K., Somers, L., Papirmeister, B. and Yamamura, H. (1974): Nature 252:476–478.PubMedCrossRefGoogle Scholar
  17. 17.
    Lefresne, P., Hamon, M., Beaujouan, J. C. and Glowinski, J. (1977): Biochimie 59:197–215.PubMedCrossRefGoogle Scholar
  18. 18.
    Marchbanks, R.M. and Israel, M. (1971): J. Neurochem. 18:439–448.PubMedCrossRefGoogle Scholar
  19. 19.
    Martin, K. (1968): J. Gen. Physiol. 51:497–516.PubMedCrossRefGoogle Scholar
  20. 20.
    Massarelli, R. and Mandel, P. (1976): In: Transport Phenomena in the Nervous System, (Eds.) G. Levi, L. Battistin and A. Lajtha, Plenum Press, New York, pp. 199–209.CrossRefGoogle Scholar
  21. 21.
    Massarelli, R., Durkin, T., Niedergang, C. and Mandel, P. (1976): Pharmacol. Res. Commun, 8:407–416.PubMedCrossRefGoogle Scholar
  22. 22.
    Massarelli, R., Stefanovic, V. and Mandel, P. (1976): Brain Res. 112:103–112.PubMedCrossRefGoogle Scholar
  23. 23.
    Massarelli, R., Syapin, P.J. and Noble, E. P. (1976): Life Sci. 18:397–404.PubMedCrossRefGoogle Scholar
  24. 24.
    Noble, E. P., Syapin, P. J., Vigran, R., Gombos, G., Vincendon, G. and Rosenberg, A. (1975): Fifth Int. Meet. Int. Soc. Neurochem. Abst. 150.Google Scholar
  25. 25.
    Plagemann, G.W. and Richey, D. P. (1974): Biochim. Biophys. Acta 344:263–305.PubMedGoogle Scholar
  26. 26.
    Plagemann, G.W. and Roth, M. F. (1969): Biochemistry 8:4782–4789.PubMedCrossRefGoogle Scholar
  27. 27.
    Richelson, E. and Thompson, E. J. (1974): Nature (New Biol.) 241:201–204.Google Scholar
  28. 28.
    Ritchie, A.K. and Goldberg, A.M. (1970): Science 169:489–490.PubMedCrossRefGoogle Scholar
  29. 29.
    Sensenbrenner, M., Booher, J. and Mandel, P. (1971): Z. Zellforsch. 117:559–569.PubMedCrossRefGoogle Scholar
  30. 30.
    Sorimachi, M. and Kataoka, K. (1974): Brain Res. 72:350–353.PubMedCrossRefGoogle Scholar
  31. 31.
    Stefanovic, V., Massarelli, R., Mandel, P. and Rosenberg, A. (1975): Biochem. Pharmacol. 24:1923–1928.PubMedCrossRefGoogle Scholar
  32. 32.
    White, H.L. and Wu, J. C. (1973): J. Neurochem. 20:297–307.PubMedCrossRefGoogle Scholar
  33. 33.
    Yamamura, H. and Snyder, S. H. (1973): J. Neurochem. 21: 1355–1374.PubMedCrossRefGoogle Scholar
  34. 34.
    Yavin, E. (1976): J. Biol. Chem. 251:1392–1397.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. Massarelli
    • 1
  1. 1.Center of Neurochemistry, CNRSInstitute of Biological ChemistryStrasbourg CedexFrance

Personalised recommendations