Effect of Choline on Cholinergic Function

  • I. H. Ulus
  • R. J. Wurtman
  • M. C. Scally
  • M. J. Hirsch
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


ACh is synthesized in cholinergic neurons by the enzyme choline acetyl-transferase (CAT) (11, 19). The acetyl group used in its synthesis derives from acetyl Co A (Ac CoA); this in turn is made intraneuronally from glucose and numerous other precursors. In contrast, the choline (Ch) molecule used for ACh synthesis apparently cannot be synthesized by neurons (25) and must be obtained from the circulation (10, 15, 22, 23) and ultimately, from dietary sources or hepatic synthesis (9).


Tyrosine Hydroxylase Caudate Nucleus Superior Cervical Ganglion Choline Chloride Stomach Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, E.L. and Wurtman, R.J. (1975): Life Sci. 16:1095–1102.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen, E.L. and Wurtman, R.J. (1976): Science 191:561–562.PubMedCrossRefGoogle Scholar
  3. 3.
    Collier, B. and MacIntosh, F. C. (1969): Canad. J. Physiol. Pharmacol. 47:127–135.CrossRefGoogle Scholar
  4. 4.
    Davis, K.L., Berger, P.A. and Hollister, L. E. (1975): New. Eng. J. Med. 293:152.PubMedGoogle Scholar
  5. 5.
    Davis, K. L., Hollister, L. E., Barchas, J. D. and Berger, P.A. (1976): Life Sci. 19:1507–1516.PubMedCrossRefGoogle Scholar
  6. 6.
    Freeman, J.J., Choi, R. L. and Jenden, D.J. (1975): J. Neurochem. 24:729–734.PubMedGoogle Scholar
  7. 7.
    Growdon, J.H., Cohen, E.L. and Wurtman, R.J. (1977): J. Neurochem. 28:229–231.PubMedCrossRefGoogle Scholar
  8. 8.
    Growdon, J. H., Hirsch, M, J., Wurtman, R. J. and Wiener, W. (1977): (in preparation).Google Scholar
  9. 9.
    Hanin, I. and Schuberth, J. (1975): J. Neurochem. 23:819–824.CrossRefGoogle Scholar
  10. 10.
    Haubrich, D.R., Wang, P.F.L. and Wedeking, P.W. (1975): J. Pharmacol. Exp. Ther. 193:246–255.PubMedGoogle Scholar
  11. 11.
    Hebb, C. (1972): Physiol. Rev. 52:918–957.PubMedGoogle Scholar
  12. 12.
    Jenden, D. J., Choi, L., Silverman, R.W., Steinborn, J. A., Roch, M. and Booth, R. A. (1974): Life Sci. 14:55–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajanian, K.K. (1973): J. Neurochem. 20:581–593.PubMedCrossRefGoogle Scholar
  14. 14.
    Lewis, P.R., Shute, C. C.D. and Silver, A. (1967): J. Physiol. (Lond.) 191:215–224.Google Scholar
  15. 15.
    MacIntosh, F. C. (1963): Canad. J. Biochem. Physiol. 41:2555–2571.CrossRefGoogle Scholar
  16. 16.
    Molinoff, P.B. and Axelrod, J. (1971): Ann. Rev. Biochem. 40: 465–500.PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller, R.A., Thoenen, H. and Axelrod, J. (1969): Science 158: 468–469.CrossRefGoogle Scholar
  18. 18.
    Mueller, R.A., Thoenen, H. and Axelrod, J. (1969): J. Pharmacol. Exp. Ther. 169:74–79.PubMedGoogle Scholar
  19. 19.
    Nachmansohn, D. and Machado, A. L. (1943): J. Neurophysiol. 6: 397–403.Google Scholar
  20. 20.
    Nagler, A.L., Dettbarn, W.-D., Seifter, E. and Levenson, S.M. (1968): J. Nutrit. 94:13–19.PubMedGoogle Scholar
  21. 21.
    Pardridge, W.M. and Oldendorf, W.H. (1977): J. Neurochem. 28: 5–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Schuberth, J. and Jenden, D.J. (1975): Brain Res. 84:245–256.PubMedCrossRefGoogle Scholar
  23. 23.
    Schuberth, J., Sparf, B. and Sundwall, A. (1970): J. Neurochem. 17:461–488.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, C.M. (1972): Brit. J. Pharmacol. 45:172.Google Scholar
  25. 25.
    Sparf, B. (1973): Acta Physiol. Scand. Suppl. 397:1–47.PubMedGoogle Scholar
  26. 26.
    Tamminga, C., Smith, R. C., Chang, S., Haraszti, J. S. and Davis, J.M. (1976): Lancet II:905.CrossRefGoogle Scholar
  27. 27.
    Thoenen, H. (1974): Life Sci. 14:223–235.PubMedCrossRefGoogle Scholar
  28. 28.
    Thoenen, H. (1975): In: Handbook of Psychopharmacology, Vol.3, (Eds.) L. L. Iversen, S.D. Iversen and S.H. Snyder, Plenum Press, New York, pp. 443–475.Google Scholar
  29. 29.
    Thoenen, H., Mueller, R.A. and Axelrod, J. (1969): Nature 221:1264.PubMedCrossRefGoogle Scholar
  30. 30.
    Thoenen, H., Mueller, R.A. and Axelrod, J. (1969): J. Pharmacol. Exp. Ther. 169:249–254.PubMedGoogle Scholar
  31. 31.
    Ulus, I.H., Hirsch, M.J. and Wurtman, R.J. (1977): Proc. Nat. Acad. Sci. 74:798–800.PubMedCrossRefGoogle Scholar
  32. 32.
    Ulus, I.H. and Wiirtman, R.J. (1976): Science 194:1060–1061.PubMedCrossRefGoogle Scholar
  33. 33.
    Viveros, O.H., Arqueros, L., Connett, R.J. and Kirschner, N. (1969): Molec. Pharmacol. 5:69–82.Google Scholar
  34. 34.
    White, H. L. and Wu, J. C. (1973): J. Neurochem. 20:297–300.PubMedCrossRefGoogle Scholar
  35. 35.
    Wurtman, R. J., Larin, F., Mostafapour, S. and Fernstrom, J.D. (1974): Science 185:183–184.PubMedCrossRefGoogle Scholar
  36. 36.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21:1355–1374.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • I. H. Ulus
    • 1
  • R. J. Wurtman
    • 1
  • M. C. Scally
    • 1
  • M. J. Hirsch
    • 1
  1. 1.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations