Pyruvate Utilization, Choline Uptake and Acetylcholine Synthesis

  • R. S. Jope
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


This presentation will review the lines of evidence that indicate ACh synthesis can be sensitive to reduced carbohydrate utilization, and describe some recent experiments in which the effects of impaired carbohydrate utilization have been used to investigate the functional relationship between the high affinity transport of choline (Ch) and the synthesis of ACh. A glucose requirement for ACh synthesis was established in 1936 by Quastel et al. (29) in brain slices, and in 1939 by Karlson and MacIntosh (20) in sympathetic ganglia. Since that time both in vivo (35, 36) and in vitro (3, 6, 22, 34) investigations have shown that glucose and pyruvate are the primary sources of acetyl groups for ACh synthesis in brain tissue. Glucose is converted to pyruvate by glycolysis and pyruvate is converted to acetyl coenzyme A (Ac CoA) by CO2 in the mitochondria by pyruvate dehydrogenase. Pyruvate dehydrogenase in the brain is regulated by phosphorylation (inactive form) and dephosphorylation (active form) which can be altered in vitro (17) and in vivo (18) by various treatments. The route of transfer of acetyl units out of the mitochondria to the site of ACh synthesis in the cytoplasm has not been clearly defined, though transport of citrate followed by the synthesis of AcCoA catalyzed by citrate lyase has received some support (4, 6, 33).


Brain Slice Pyruvate Dehydrogenase Choline Uptake High Affinity Transport Acetylcholine Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.Google Scholar
  2. 2.
    Barker, L.A. and Mittag, T.W. (1976): Biochem. Pharmacol. 25: 1931–1933.PubMedCrossRefGoogle Scholar
  3. 3.
    Browning, E. T. and Schulman, M. P. (1968): J. Neurochem. 15:1391–1405.PubMedCrossRefGoogle Scholar
  4. 4.
    Browning, E. T. (1975): In: Biology of Cholinergic Function, (Eds.) A.M. Goldberg and I. Hanin, Raven Press, New York, pp. 187–201.Google Scholar
  5. 5.
    Cheney, D. L., Gubler, C.J. and Jaussi, A.W. (1969): J. Neurochem. 16:1283–1291.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng, S. C., Nakamura, R. and Waelsch, H. (1967): Biochem. J. 104:52P–53P.PubMedGoogle Scholar
  7. 7.
    Crossland, J., Pappius, H.M. and Elliott, K.A. C. (1955): Amer. J. Physiol. 183:32–34.PubMedGoogle Scholar
  8. 8.
    Dolivo, M. (1970): Fed. Proc. 33: 1043–1048.Google Scholar
  9. 9.
    Freeman, J.J., Choi, R. L. and Jenden, D.J. (1975): J. Neurochem. 24:729–734.PubMedGoogle Scholar
  10. 10.
    Gibson, G. E., Jope, R.S. and Blass, J. P. (1975): Biochem. J. 148: 17–23.PubMedGoogle Scholar
  11. 11.
    Gibson, G. E. and Blass, J. P. (1976) J. Neurochem. 26:1073–1078.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibson, G. E. and Blass, J. P. (1976): J. Neurochem. 27:37–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Grewaal, D.S. and Quastel, J.H. (1973): Biochem. J. 132:1–14.PubMedGoogle Scholar
  14. 14.
    Haga, T. and Noda, H. (1973):Biochim. Biophys. Acta 291:564–575.Google Scholar
  15. 15.
    Jenden, D.J., Roch, M. and Booth, R.A. (1973): Anal. Biochem. 55:438–448.PubMedCrossRefGoogle Scholar
  16. 16.
    Jenden, D. J., Choi, L., Silverman, R.W., Steinborn, J. A., Roch, M. and Booth, R.A. (1974): Life Sci. 14:55–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Jope, R.S. and Blass, J. P. (1975): Biochem. J. 150:397–403.PubMedGoogle Scholar
  18. 18.
    Jope, R.S. and Blass, J. P. (1976): J. Neurochem. 26:709–714.PubMedCrossRefGoogle Scholar
  19. 19.
    Jope, R.S. and Jenden, D.J. (1977): Life Sci. (in press).Google Scholar
  20. 20.
    Karlson, G. and MacIntosh, F. C. (1939): J. Physiol. (Lond.) 96: 277–292.Google Scholar
  21. 21.
    Kini, M.M. and Quastel, F.R.S. (1959): Nature 184:252–256.PubMedCrossRefGoogle Scholar
  22. 22.
    Lefresne, P., Guyenet, P. and Glowinski, J. (1973): J. Neurochem. 20:1083–1098.PubMedCrossRefGoogle Scholar
  23. 23.
    Mann, P.J. G. and Quastel, J.H. (1940): Nature 145:856–857.CrossRefGoogle Scholar
  24. 24.
    Michalek, H., Gatti, G. L. and Pocchiari, F. (1968): Biochem. J. 110:237–241.PubMedGoogle Scholar
  25. 25.
    Michalek, H., Antal, J., Gatti, G. L. and Pocchiari, F. (1971): Biochem. Pharmacol. 20: 1265–1270.PubMedCrossRefGoogle Scholar
  26. 26.
    Molenaar, P.C. and Polak, R.L. (1976): J. Neurochem. 26:95–99.PubMedGoogle Scholar
  27. 27.
    Nakayato, Y. and Douglas, W.W. (1973): Proc. Nat. Acad. Sci. 70: 1730–1733.Google Scholar
  28. 28.
    Nicklas, W.J., Clark, J. B. and Williamson, J.R. (1971): Biochem. J. 123:83–95.PubMedGoogle Scholar
  29. 29.
    Quastel, J.H., Tennenbaum, M. and Wheatley, A.H.M. (1936): Biochem. J. 30:1668–1681.PubMedGoogle Scholar
  30. 30.
    Reynolds, S.F. and Blass, J. P. (1975): J. Neurochem. 24:185–186.PubMedCrossRefGoogle Scholar
  31. 31.
    Reynolds, S.F. (1974): Ph.D. Dissertation, University of California, Los Angeles, California.Google Scholar
  32. 32.
    Sacchi, O. and Perri, V. (1973): J. Gen. Physiol. 61:342–360.Google Scholar
  33. 33.
    Schuberth, J., Sparf, B. and Sundwall, A. (1969): J. Neurochem. 16:695–700.PubMedCrossRefGoogle Scholar
  34. 34.
    Sollenberg, J. and Sorbo, B. (1970): J. Neurochem. 17:201–207.PubMedCrossRefGoogle Scholar
  35. 35.
    Suszkiw, J.B. and Pilar, G. (1976): J. Neurochem. 26:1133–1138.PubMedCrossRefGoogle Scholar
  36. 36.
    Tucek, S. and Cheng, S. C. (1970): Biochim. Biophys. Acta 208: 538–540.Google Scholar
  37. 37.
    Tucek, S. and Cheng, S. C. (1974): J. Neurochem. 22:893–914.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. S. Jope
    • 1
  1. 1.Department of Pharmacology, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations