Skip to main content

Pyruvate Utilization, Choline Uptake and Acetylcholine Synthesis

  • Chapter
Cholinergic Mechanisms and Psychopharmacology

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 24))

Abstract

This presentation will review the lines of evidence that indicate ACh synthesis can be sensitive to reduced carbohydrate utilization, and describe some recent experiments in which the effects of impaired carbohydrate utilization have been used to investigate the functional relationship between the high affinity transport of choline (Ch) and the synthesis of ACh. A glucose requirement for ACh synthesis was established in 1936 by Quastel et al. (29) in brain slices, and in 1939 by Karlson and MacIntosh (20) in sympathetic ganglia. Since that time both in vivo (35, 36) and in vitro (3, 6, 22, 34) investigations have shown that glucose and pyruvate are the primary sources of acetyl groups for ACh synthesis in brain tissue. Glucose is converted to pyruvate by glycolysis and pyruvate is converted to acetyl coenzyme A (Ac CoA) by CO2 in the mitochondria by pyruvate dehydrogenase. Pyruvate dehydrogenase in the brain is regulated by phosphorylation (inactive form) and dephosphorylation (active form) which can be altered in vitro (17) and in vivo (18) by various treatments. The route of transfer of acetyl units out of the mitochondria to the site of ACh synthesis in the cytoplasm has not been clearly defined, though transport of citrate followed by the synthesis of AcCoA catalyzed by citrate lyase has received some support (4, 6, 33).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.

    Google Scholar 

  2. Barker, L.A. and Mittag, T.W. (1976): Biochem. Pharmacol. 25: 1931–1933.

    Article  PubMed  Google Scholar 

  3. Browning, E. T. and Schulman, M. P. (1968): J. Neurochem. 15:1391–1405.

    Article  PubMed  Google Scholar 

  4. Browning, E. T. (1975): In: Biology of Cholinergic Function, (Eds.) A.M. Goldberg and I. Hanin, Raven Press, New York, pp. 187–201.

    Google Scholar 

  5. Cheney, D. L., Gubler, C.J. and Jaussi, A.W. (1969): J. Neurochem. 16:1283–1291.

    Article  PubMed  Google Scholar 

  6. Cheng, S. C., Nakamura, R. and Waelsch, H. (1967): Biochem. J. 104:52P–53P.

    PubMed  Google Scholar 

  7. Crossland, J., Pappius, H.M. and Elliott, K.A. C. (1955): Amer. J. Physiol. 183:32–34.

    PubMed  Google Scholar 

  8. Dolivo, M. (1970): Fed. Proc. 33: 1043–1048.

    Google Scholar 

  9. Freeman, J.J., Choi, R. L. and Jenden, D.J. (1975): J. Neurochem. 24:729–734.

    PubMed  Google Scholar 

  10. Gibson, G. E., Jope, R.S. and Blass, J. P. (1975): Biochem. J. 148: 17–23.

    PubMed  Google Scholar 

  11. Gibson, G. E. and Blass, J. P. (1976) J. Neurochem. 26:1073–1078.

    Article  PubMed  Google Scholar 

  12. Gibson, G. E. and Blass, J. P. (1976): J. Neurochem. 27:37–42.

    Article  PubMed  Google Scholar 

  13. Grewaal, D.S. and Quastel, J.H. (1973): Biochem. J. 132:1–14.

    PubMed  Google Scholar 

  14. Haga, T. and Noda, H. (1973):Biochim. Biophys. Acta 291:564–575.

    Google Scholar 

  15. Jenden, D.J., Roch, M. and Booth, R.A. (1973): Anal. Biochem. 55:438–448.

    Article  PubMed  Google Scholar 

  16. Jenden, D. J., Choi, L., Silverman, R.W., Steinborn, J. A., Roch, M. and Booth, R.A. (1974): Life Sci. 14:55–63.

    Article  PubMed  Google Scholar 

  17. Jope, R.S. and Blass, J. P. (1975): Biochem. J. 150:397–403.

    PubMed  Google Scholar 

  18. Jope, R.S. and Blass, J. P. (1976): J. Neurochem. 26:709–714.

    Article  PubMed  Google Scholar 

  19. Jope, R.S. and Jenden, D.J. (1977): Life Sci. (in press).

    Google Scholar 

  20. Karlson, G. and MacIntosh, F. C. (1939): J. Physiol. (Lond.) 96: 277–292.

    Google Scholar 

  21. Kini, M.M. and Quastel, F.R.S. (1959): Nature 184:252–256.

    Article  PubMed  Google Scholar 

  22. Lefresne, P., Guyenet, P. and Glowinski, J. (1973): J. Neurochem. 20:1083–1098.

    Article  PubMed  Google Scholar 

  23. Mann, P.J. G. and Quastel, J.H. (1940): Nature 145:856–857.

    Article  Google Scholar 

  24. Michalek, H., Gatti, G. L. and Pocchiari, F. (1968): Biochem. J. 110:237–241.

    PubMed  Google Scholar 

  25. Michalek, H., Antal, J., Gatti, G. L. and Pocchiari, F. (1971): Biochem. Pharmacol. 20: 1265–1270.

    Article  PubMed  Google Scholar 

  26. Molenaar, P.C. and Polak, R.L. (1976): J. Neurochem. 26:95–99.

    PubMed  Google Scholar 

  27. Nakayato, Y. and Douglas, W.W. (1973): Proc. Nat. Acad. Sci. 70: 1730–1733.

    Google Scholar 

  28. Nicklas, W.J., Clark, J. B. and Williamson, J.R. (1971): Biochem. J. 123:83–95.

    PubMed  Google Scholar 

  29. Quastel, J.H., Tennenbaum, M. and Wheatley, A.H.M. (1936): Biochem. J. 30:1668–1681.

    PubMed  Google Scholar 

  30. Reynolds, S.F. and Blass, J. P. (1975): J. Neurochem. 24:185–186.

    Article  PubMed  Google Scholar 

  31. Reynolds, S.F. (1974): Ph.D. Dissertation, University of California, Los Angeles, California.

    Google Scholar 

  32. Sacchi, O. and Perri, V. (1973): J. Gen. Physiol. 61:342–360.

    Google Scholar 

  33. Schuberth, J., Sparf, B. and Sundwall, A. (1969): J. Neurochem. 16:695–700.

    Article  PubMed  Google Scholar 

  34. Sollenberg, J. and Sorbo, B. (1970): J. Neurochem. 17:201–207.

    Article  PubMed  Google Scholar 

  35. Suszkiw, J.B. and Pilar, G. (1976): J. Neurochem. 26:1133–1138.

    Article  PubMed  Google Scholar 

  36. Tucek, S. and Cheng, S. C. (1970): Biochim. Biophys. Acta 208: 538–540.

    Google Scholar 

  37. Tucek, S. and Cheng, S. C. (1974): J. Neurochem. 22:893–914.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Jope, R.S. (1978). Pyruvate Utilization, Choline Uptake and Acetylcholine Synthesis. In: Jenden, D.J. (eds) Cholinergic Mechanisms and Psychopharmacology. Advances in Behavioral Biology, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3096-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3096-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3098-1

  • Online ISBN: 978-1-4684-3096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics