Studies on Substrates, Inhibitors and Modifiers on the High Affinity Choline Transport-Acetylation System Present in Rat Brain Synaptosomes

  • L. A. Barker
  • T. W. Mittag
  • B. Krespan
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


Several laboratories have demonstrated a requirement for the high affinity transport of choline (Ch) in the synthesis of ACh by intact synaptosomes (3, 18, 19, 22, 27). Particularly striking are those results which show an almost total conversion of Ch transported by the high affinity carrier to ACh (27), and which suggest that the high affinity carrier is present only at cholinergic nerve terminals (22, 26). These observations led us (3–5) and others (23, 25) to propose and test the hypothesis that the high affinity transport and acetylation of Ch by nerve endings are coupled in some manner.


High Affinity Transport Cholinergic Nerve Terminal Choline Analog Synaptosomal Uptake Affinity Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, L.A. (1976): In: Biology of Cholinergic Function, (Eds.) I. Hanin and A. Goldberg, Raven Press, New York, pp. 233–268.Google Scholar
  2. 2.
    Barker, L.A., Dowdall, M.J. and Mittag, T.W. (1975): Brain Res. 86:343–348.PubMedCrossRefGoogle Scholar
  3. 3.
    Barker, L.A. and Mittag, T.W. (1973): FEBS Letts. 35:141–144.CrossRefGoogle Scholar
  4. 4.
    Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.Google Scholar
  5. 5.
    Barker, L.A. and Mittag, T.W. (1976): Bioehem. Pharmacol. 25: 1931–1933.CrossRefGoogle Scholar
  6. 6.
    Barker, L.A., Mittag, T.W., Tormay, A. and Matriano, D. (1974): Trans. Amer. Soc. Neurochem. 5:123.Google Scholar
  7. 7.
    Carrol, P.T. and Goldberg, A.M. (1976): J. Neurochem. 25:523–527.CrossRefGoogle Scholar
  8. 8.
    Cavallito, C.J., Yun, H.S., Kaplan, T., Smith, J. C. and Foldes, F.F. (1970): J. Med. Chem. 13:221.Google Scholar
  9. 9.
    Cavallito, C.J., Yun, H.S., Smith, J. C. and Foldes, F.F. (1969): J. Med. Chem. 12:134.Google Scholar
  10. 10.
    Collier, B., Barker, L.A. and Mittag, T.W. (1976): Molec. Pharmacol. 12:340–344.Google Scholar
  11. 11.
    Collier, B. and Ilson, D. (1977): J. Physiol. 264:489–509.PubMedGoogle Scholar
  12. 12.
    Collier, B., Lovat, S., Ilson, D., Barker, L.A. and Mittag, T.W. (1977): J. Neurochem. 28:331–340.PubMedCrossRefGoogle Scholar
  13. 13.
    Currier, S. F. and Mautner, H. G. (1974): Proc. Nat. Acad. Sci. USA 71:3355–3358.Google Scholar
  14. 14.
    Dauterman, W. C. and Mehrotia, K.N. (1963): J. Neurochem. 10: 113–117.PubMedCrossRefGoogle Scholar
  15. 15.
    Dowdall, M.J. (1975): In: Metabolic Compartmentation and Neurotransmission, (Eds.) Berl, D. D. Clarke and D. Schneider, Plenum Press, New York, pp. 585–607.CrossRefGoogle Scholar
  16. 16.
    Dowdall, M.J., Fox, G., Wachtier, K., Whittaker, V. P. and Zimmermann, H. (1976): Cold Springs Harbor Symposium XL:65–81.Google Scholar
  17. 17.
    Gibson, G. E., Jope, R. and Blass, J. P. (1975): Biochem. J. 148: 17–23.PubMedGoogle Scholar
  18. 18.
    Guyenet, P., Lefresne, P., Rossier, J., Beaujouan, J. C. and Glowinski, J. (1972): Molec. Pharmacol. 9:630–639.Google Scholar
  19. 19.
    Haga, T. and Noda, H. (1973): Biochim. Biophys. Acta 291:564–575.Google Scholar
  20. 20.
    Hancock, J. C. and Volle, R. L. (1968): Arch. Int. Pharmacodyn. 175:295–303.Google Scholar
  21. 21.
    Hersh, L.B. and Tee, M. P. (1977): J. Biol. Chem. (in press).Google Scholar
  22. 22.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajaman, G.K. (1973): J. Neurochem. 20:581–593.PubMedCrossRefGoogle Scholar
  23. 23.
    Lefresne, P., Guyenet, P., Beaujouan, J. C. and Glowinski, J. (1975): J. Neurochem. 25:415–422.PubMedCrossRefGoogle Scholar
  24. 24.
    Simon, J., Mittag, T.W. and Kuhar, M.J. (1975): Bioehem. Pharmacol. 24:1129–1142.Google Scholar
  25. 25.
    Suszkiw, J.B. and Pilar, G. (1976): J. Neurochem. 26:1133–1138.PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamura, H. I., Kuhar, M. J., Greenberg, A. M. and Synder, S. H. (1974): Brain Res. 66:541–546.CrossRefGoogle Scholar
  27. 27.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21:1355–1374.PubMedCrossRefGoogle Scholar
  28. 28.
    Whittaker, V. P. and Dowdall, M.J. (1975): In: Cholinergic Mechanisms, (Ed.) P. Waser, Raven Press, New York, pp. 23–42.Google Scholar
  29. 29.
    Whittaker, V. P., Dowdall, M.J. and Boyne, A.F. (1972): Biochem. Soc. Symp. 36:49–68.Google Scholar
  30. 30.
    Wilbrandt, W. (1975): Life Sci. 16:201–213.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • L. A. Barker
    • 1
  • T. W. Mittag
    • 1
  • B. Krespan
    • 1
  1. 1.Department of Pharmacology, Mount Sinai School of MedicineCUNYNew YorkUSA

Personalised recommendations