Characteristics and Significance of Sodium-Dependent, High Affinity Choline Uptake

  • M. J. Kuhar
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


The notion that choline (Ch) transport is an important aspect of a functioning cholinergic nerve terminal has long been suspected and now seems firmly established. In a classic study of acetylcholine (ACh) metabolism in the sympathetic ganglion of the cat, Birks and MacIntosh (5) made the following statements, which in light of the developments of the last 15 years are indeed remarkable:

“. . . the nerve endings must be remarkably efficient in extracting choline from the extracellular fluid. The superior cervical ganglion preparation of the cat. . . will continue to release acetylcholine. . . during an indefinitely long period of preganglionic stimulation. This acetylcholine must be derived from plasma choline. . . the nerve endings are therefore able to take up and acetylate choline supplied to the ganglion during the few seconds required for the plasma to pass through the ganglionic vessels. Since choline as a quaternary base diffuses slowly into most cells, and since the nerve endings can form only a small part of the bulk of the ganglion, this fact is rather remarkable. It suggests that the endings. . . must be provided with some special mechanism for the entry of choline ions. . .. it seems very likely that some sort of choline carrier, located in a membrane lying between the extracellular fluid and the sites of acetylcholine formation, is a constant feature of cholinergic mechanisms.” (5).


Transport System Cholinergic Neuron Affinity System Cholinergic Mechanism High Affinity Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atweh, S.F. and Kuhar, M.J. (1976): Europ. J. Pharmacol. 37: 311–319.CrossRefGoogle Scholar
  2. 2.
    Barker, L.A. (1976): Life Sci. 18:725–732.PubMedCrossRefGoogle Scholar
  3. 3.
    Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.Google Scholar
  4. 4.
    Barlow, R.B. and Zoller, A. (1964): Brit. J. Pharmacol. 23:131–150.PubMedGoogle Scholar
  5. 5.
    Birks, R. and MacIntosh, F.C. (1961): Canad. J. Biochem. Physiol. 39:787–827.Google Scholar
  6. 6.
    Bourdois, P.S., Mitchell, J. F., Somogyi, G.T. and Szerb, J. C. (1974): Brit. J. Pharmacol. 52:509–517.Google Scholar
  7. 7.
    Carroll, P.T. and Goldberg, A.M. (1975): J. Neurochem. 25:523–527.PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen, E.L. and Wurtman, R.J. (1976): Science 191:561.PubMedCrossRefGoogle Scholar
  9. 9.
    Collier, B. and Ilson, D. (1977): J. Physiol. (Lond.) 264:489–509.Google Scholar
  10. 10.
    Collier, B. and Katz, H.S. (1974): J. Physiol. (Lond.) 238:639–655.Google Scholar
  11. 11.
    Collier, B. and MacIntosh, F.C. (1969): Canad. J. Physiol. Pharmacol. 47:127–135.Google Scholar
  12. 12.
    Diamond, I. and Kennedy, E.T. (1969): J. Biol. Chem. 244:3258–3263.Google Scholar
  13. 13.
    Douglas, W.W. and Rubin, R. P. (1964): J. Physiol. 175:231–241.PubMedGoogle Scholar
  14. 14.
    Dowdall, M.J. and Simon, E.J. (1973): J. Neurochem. 21:969–982.PubMedCrossRefGoogle Scholar
  15. 15.
    Elmquist, D. and Feldman, D.S. (1966): Acta Physiol. Scand. 67:34–42.CrossRefGoogle Scholar
  16. 16.
    Fonnum, F. (1973): Brain Res. 62:497–507.PubMedCrossRefGoogle Scholar
  17. 17.
    Glover, V. S.A. and Potter, L.T. (1971): J. Neurochem. 18:571–580.PubMedCrossRefGoogle Scholar
  18. 18.
    Grewaal, D.S. and Quastel, J.H. (1973): Biochem. J. 132:1–14.PubMedGoogle Scholar
  19. 19.
    Guyenet, P., Lefresne, P., Rossier, J., Beaujouan, J. C. and Glowinski, J. (1973): Molec. Pharmacol. 9:630–639.Google Scholar
  20. 20.
    Haga, T. (1971): J. Neurochem. 18:781–798.PubMedCrossRefGoogle Scholar
  21. 21.
    Haga, T. and Noda, H. (1973): Biochem. Biophys. Acta 291:564–575.Google Scholar
  22. 22.
    Haubrich, D.R., Wang, P.F., Clody, D. and Wedeking, D.W. (1975): Life Sci. 17:975.PubMedCrossRefGoogle Scholar
  23. 23.
    Hebb, C. (1972): Physiol. Rev. 52:918–957.PubMedGoogle Scholar
  24. 24.
    Holden, J.T., Rossier, J., Beaujouan, J. C., Guyenet, P. and Glowinski, J. (1975): Molec. Pharmacol. 11:19–28.Google Scholar
  25. 25.
    Jenden, D.J., Jope, R.S. and Weiler, M. H. (1976): Science 194: 635–637.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaita, A.A. and Goldberg, A.M. (1969): J. Neurochem. 26:1185–1191.CrossRefGoogle Scholar
  27. 27.
    Krell, R.D. and Goldberg, A.M. (1975): Biochem. Pharmacol. 24: 391–396.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuhar, M.J., DeHaven, R.N., Yamamura, H. I., Rommelspacher, H. and Simon, J.R. (1975): Brain Res. 97:265–275.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajanian, G.K. (1973): J. Neurochem. 20:581–593.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuhar, M.J. and Simon, J.R. (1974): J. Neurochem. 22:1135–1137.PubMedCrossRefGoogle Scholar
  31. 31.
    Lanks, K., Somers, L., Papirmeister, B. and Yamamura, H. (1974): Nature (Lond.) 252:476–478.CrossRefGoogle Scholar
  32. 32.
    MacIntosh, F.C. (1963): Canad. J. Biochem. 41:2555–2571.CrossRefGoogle Scholar
  33. 33.
    Mann, S. P. and Hebb, C. (1975): Biochem. Pharmacol. 24:1013–1017.PubMedCrossRefGoogle Scholar
  34. 34.
    Marchbanks, R.M. (1969): Biochem. Pharmacol. 18:1763–1766.PubMedCrossRefGoogle Scholar
  35. 35.
    Massarelli, R., Sansenbrenner, M., Ebel, A. and Mandel, P. (1974): Neurobiology 4:414–418.PubMedGoogle Scholar
  36. 36.
    Morris, D., Maneckjee, A. and Hebb, C. (1971): Biochem. J. 125: 857–863.PubMedGoogle Scholar
  37. 37.
    Mulder, A.H., Yamamura, H.I., Kuhar, M.J. and Snyder, S.H. (1974): Brain Res. 70:372–376.PubMedCrossRefGoogle Scholar
  38. 38.
    Murrin, L.C., DeHaven, R.H., Tulipan, N., Zarbin, M.A. and Kuhar, M.J. (1977): Proc. Neurochem. Soc. (in press).Google Scholar
  39. 39.
    Murrin, L. C. and Kuhar, M.J. (1976): Molec. Pharmacol. 22:1082–1090.Google Scholar
  40. 40.
    Pert, C.B. and Snyder, S.H. (1974): J. Pharmacol. Exp. Ther. 191:102–108.Google Scholar
  41. 41.
    Potter, L.T. (1970): J. Physiol. 206:145–166.PubMedGoogle Scholar
  42. 42.
    Richardson, I.W. and Szerb, J.C. (1974): Brit. J. Pharmacol. 52: 499–507.Google Scholar
  43. 43.
    Richelson, E. and Thompson, E.J. (1973): Nature (Lond.) 241:201–208.Google Scholar
  44. 44.
    Rommelspacher, H. and Kuhar, M.J. (1974): Brain Res. 81:243–251.PubMedCrossRefGoogle Scholar
  45. 45.
    Samaras, G.M. and Contrera, J.F. (1976): Neurosci. Absts. 2:797.Google Scholar
  46. 46.
    Schultz, S. G. and Curran, P.F. (1970): Physiol. Rev. 50:637–718.PubMedGoogle Scholar
  47. 47.
    Simon, J.R., Atweh, S.F. and Kuhar, M.J. (1976): J. Neurochem. 26:909–922.PubMedCrossRefGoogle Scholar
  48. 48.
    Simon J.R. and Kuhar, M.J. (1976): J. Neurochem. 27:93–99.PubMedCrossRefGoogle Scholar
  49. 49.
    Simon, J.R., Mittag, T. and Kuhar, M.J. (1975): Biochem. Pharmacol. 24:1139–1142.PubMedCrossRefGoogle Scholar
  50. 50.
    Somogyi, G.T. and Szerb, J.C. (1972): J. Neurochem. 19:2667–2677.PubMedCrossRefGoogle Scholar
  51. 51.
    Suszkiw, J. B., Beach, R. L. and Pilar, G. (1976): J. Neurochem. 1123–1131.Google Scholar
  52. 52.
    Suszkiw, J. B. and Pilar, G. (1976): J. Neurochem. 26:1133–1138.PubMedCrossRefGoogle Scholar
  53. 53.
    Welsh, J.H. and Taub, R. (1951): J. Pharmacol. Exp. Ther. 103:62.PubMedGoogle Scholar
  54. 54.
    Whittaker, V.P. (1975): In: Cholinergic Mechanisms, (Ed.)P.G. Waser, Raven Press, New York, pp.23.Google Scholar
  55. 55.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21:1355–1374.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. J. Kuhar
    • 1
  1. 1.Departments of Pharmacology and Experimental Therapeutics, Psychiatry and Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations