Advertisement

Source of the Acetyl Group in Acetylcholine

  • J. H. Quastel
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)

Abstract

It is an ill wind that blows no one any good. The advent of the ill-fated Nazi regime in the early thirties wafted many scientists from Germany into America and the United Kingdom. Among those who found hospitality in my laboratory in a mental hospital in Cardiff, Wales, was one whose major qualification for biochemical prowess was his unexpected skill in estimating acetylcholine (ACh) by the leech assay technique. He came to me about 1934 and I decided there and then to carry out studies on ACh formation in isolated brain. At that time there were very few laboratories in the world carrying out systematic biochemical studies on the brain related to brain function. Perhaps the nearest work on these lines, outside that of our laboratory, was that of Peters and his colleagues (27) in Oxford on the action of vitamin B1 on pyruvate oxidation in polyneuritic pigeon brain preparations. Some time earlier than this we had found, in systematic studies of cerebral oxidation in brain (30) that glucose, lactate and pyruvate are readily oxidized by brain tissue in vitro and that, at normal physiological concentrations, glucose is the major fuel of the brain in vitro. It was known at that time, that brain contains an ACh-like substance and in fact, values of the order of 2 nmol/g wet wt had been quoted for the ACh content of the brains of dog, cat and guinea pig.

Keywords

Citric Acid Cycle Label Glucose Label Acetate Intracisternal Injection Brain Cortex Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benjamin, A.M. and Quastel, J. H. (1974): J. Neurochem. 23:457–464.PubMedCrossRefGoogle Scholar
  2. 2.
    Berl, S., Clarke, D.A. and Nicklas, W.J. (1970): J. Neurochem. 17:999–1007.PubMedCrossRefGoogle Scholar
  3. 3.
    Browning, E.T. and Schulman, M.P. (1968): J. Neurochem. 15:1391–1405.PubMedCrossRefGoogle Scholar
  4. 4.
    Bull, G. and Oderfeld-Nowak, B. (1971): J. Neurochem. 18:935–941.PubMedCrossRefGoogle Scholar
  5. 5.
    Chan, S. L. and Quastel, J.H. (1970): Biochem. Pharmacol. 19:1071–1085.CrossRefGoogle Scholar
  6. 6.
    DeRobertis, E. and de Lores Arnaiz, G.R. (1969): Handbook Neurochem. 2:236–392.Google Scholar
  7. 7.
    DiPietro, D. and Weinhouse, S. (1959): Arch. Biochem. Biophys. 80:268–275.CrossRefGoogle Scholar
  8. 8.
    Gibson, G. E. and Blass, J. P. (1976): J. Neurochem. 27:37–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Gibson, G. E., Jope, R. and Blass, J. P. (1975): Biochem. J. 148:17–23.PubMedGoogle Scholar
  10. 10.
    Gonda, O. and Quastel, J.H. (1966): Biochem. J. 100:83–94.PubMedGoogle Scholar
  11. 11.
    Grewaal, D.S. and Quastel, J.H. (1973): Biochem. J. 132:1–14.PubMedGoogle Scholar
  12. 12.
    Harpur, R.P. and Quastel, J.H. (1949): Nature 164:779–782.PubMedCrossRefGoogle Scholar
  13. 13.
    Hawkins, R.A., Williamson, D.H. and Krebs, H.A. (1971): Biochem. J. 122:13–18.PubMedGoogle Scholar
  14. 14.
    Itoh, T. and Quastel, J.H. (1970): Biochem. J. 116:641–655.Google Scholar
  15. 15.
    Kaita, A.A. and Goldberg, A.M. (1969): J. Neurochem. 16:1185–1191.PubMedCrossRefGoogle Scholar
  16. 16.
    MacIntosh, F.C. (1938): J. Physiol. 93:46P.Google Scholar
  17. 17.
    Mann, P.J. G., Tennenbaum, M. and Quastel, J.H. (1938): Biochem. J. 32:243–261.PubMedGoogle Scholar
  18. 18.
    Mann, P.J. G., Tennenbaum, M. and Quastel, J.H. (1939): Biochem. J. 33:822–835.PubMedGoogle Scholar
  19. 19.
    Mann, P.J. G. and Quastel, J.H. (1940): Nature 145:856–857.CrossRefGoogle Scholar
  20. 20.
    Mann, P.J. G. and Quastel, J.H. (1941): Biochem. J. 35:502–517.PubMedGoogle Scholar
  21. 21.
    Matsuda, T., Saito, K., Katsuki, S., Hata, F. and Yoshida, H. (1971): J. Neurochem. 28:713–719.CrossRefGoogle Scholar
  22. 22.
    McCaman, R.E., de Lores Arnaiz, G.R. and De Robertis, E. (1965): 12:927–935.Google Scholar
  23. 23.
    Michalek, H., Antal, J., Gatti, G. L. and Pocchiari, F. (1972): Biochem. J. 20:1265–1270.Google Scholar
  24. 24.
    Musick, J. and Hubbard, J.I. (1972): Nature 237:279–281.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakamura, R., Cheng, S. C. and Naruse, H. (1970): Biochem. J. 118:443–450.PubMedGoogle Scholar
  26. 26.
    Owen, O.E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. and Cahill, G. F. (1967): J. Clin. Invest. 46:1589–1599.PubMedCrossRefGoogle Scholar
  27. 27.
    Peters, R.A. (1963): Biochemical Lesions and Lethal Synthesis. Oxford, Pergamon Press.Google Scholar
  28. 28.
    Potter, L.T., Glover, A.S.V. and Saelens, J.K. (1968): J. Biol. Chem. 243:3864–3870.PubMedGoogle Scholar
  29. 29.
    Quastel, J.H., Tennenbaum, M. and Wheatley, A.H.M. (1936): Biochem. J. 30:1668–1681.PubMedGoogle Scholar
  30. 30.
    Quastel, J.H. and Wheatley, A.H.M. (1932): Biochem. J. 26:725–744.PubMedGoogle Scholar
  31. 31.
    Ritchie, A.K. and Goldberg, A.M. (1970): Science 169:489–490.PubMedCrossRefGoogle Scholar
  32. 32.
    Stedman, E. and Stedman, E. (1937): Biochem. J. 32:817–827.Google Scholar
  33. 33.
    Stern, J.R. and Ochoa, S. (1951): J. Biol. Chem. 191:161–170.PubMedGoogle Scholar
  34. 34.
    Tucek, S. (1972): La Transmission Cholinergique de l’Excitation. Symposium International. L’Institut National de la Sante et de la Recherche Medicale, Paris, June 2–3.Google Scholar
  35. 35.
    Whittaker, V.P. (1972): Biochem. J. 128:73P–74P.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. H. Quastel
    • 1
  1. 1.Division of Neurological Sciences, Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations