Acetylcholine Compartments in Frog Muscle

  • R. Miledi
  • P. C. Molenaar
  • R. L. Polak
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


A simple model predicts that acetylcholine (ACh) contained in the cholinergic nerve endings is distributed in two compartments, a vesicular one in which ACh is stored before it is released and a cytoplasmic one in which ACh is synthesized. However, the situation is more complex. The experiments of Birks and MacIntosh (6) on the perfused superior cervical ganglion of the cat showed that there are at least three pools of ACH: 1) “depot-ACh” existing in two fractions, of which the smaller one is the more readily available for release by nerve impulses, 2) “surplus” ACh which accumulates after ChE inhibition, which is not immediately available for release by nerve impulses and which probably is localized in the nerve ending cytoplasm (8), and 3) “stationary” ACh, probably located in extra synaptic portions of the preganglionic axons. With isotopic labelling techniques used in different preparations ACh was found to exist in at least two compartments, of which the one was labelled more readily than the other (1, 2, 7, 10, 24–27, 30). However, the compartments observed in all these experiments have not yet been characterized in morphological terms. In view of this it seems to be of interest to study the compart-mentation of ACh in the neuromuscular junction because of the relatively simple organization of this enzyme.


Schwann Cell Nerve Terminal Frog Muscle Sartorius Muscle Lanthanum Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, L.A., Dowdall, M.J., Essman, W. B. and Whittaker, V. P. (1970): Drugs and Cholinergic Mechanisms in the CNS. (Eds.) E. Heilbronn and A. Winter, Research Institute of National Defence, Stockholm, pp. 193–223.Google Scholar
  2. 2.
    Barker, L.A., Dowdall, M.J. and Whittaker, V. P. (1972): Biochem. J. 130:1063–1080.PubMedGoogle Scholar
  3. 3.
    Bhatnagar, S.P. and MacIntosh, F.C. (1960): Proc. Canad. Fed. Biol. Soc. 3:12–13.Google Scholar
  4. 4.
    Birks, R., Huxley, H.E. and Katz, B. (1960): J. Physiol. (Lond.) 150:134–144.Google Scholar
  5. 5.
    Birks, R., Katz, B. and Miledi, R. (1960): J. Physiol. (Lond.) 150:145–168.Google Scholar
  6. 6.
    Birks, R. and MacIntosh, F.C. (1961): Canad. J. Biochem. Physiol. 39:787–827.CrossRefGoogle Scholar
  7. 7.
    Collier, B. (1969): J. Physiol. (Lond.) 205:341–352.Google Scholar
  8. 8.
    Collier, B. and Katz, H.S. (1971): J. Physiol. (Lond.) 214:537–552.Google Scholar
  9. 9.
    Dennis, M.J. and Miledi, R. (1974): J. Physiol. (Lond.) 237:431–452.Google Scholar
  10. 10.
    Dunant, Y., Gautron, I., Israel, M., Lesbats, B. and Manaranche, R. (1972): J. Neurochem. 19:1987–2002.PubMedCrossRefGoogle Scholar
  11. 11.
    Dunant, Y. and Hirt, L. (1970): J. Neurochem. 26:657–659.CrossRefGoogle Scholar
  12. 12.
    Fidone, S.J., Weintraub, S. T. and Stavinoha, W. B. (1976): J. Neurochem. 26:1047–1049.PubMedCrossRefGoogle Scholar
  13. 13.
    Fletcher, P. and Forrester, T. (1975): J. Physiol. (Lond.) 251:131–144.Google Scholar
  14. 14.
    Hebb, C.O. (1962): J. Physiol. (Lond.) 163:294–306.Google Scholar
  15. 15.
    Hebb, C.O., Krnjevic, K. and Silver, A. (1964): J. Physiol. (Lond.) 171:503–513.Google Scholar
  16. 16.
    Heuser, J. and Miledi, R. (1971): Proc. Roy. Soe. Lond. B179:247–260.CrossRefGoogle Scholar
  17. 17.
    Jenden, D.J., Roch, M. and Booth, R.A. (1973): Anal. Biochem. 55:438–448.PubMedCrossRefGoogle Scholar
  18. 18.
    Katz, B. (1969): The Release of Neurotransmitter Substances. Liverpool University Press.Google Scholar
  19. 19.
    Katz, B. and Kuffler, S.W. (1941): J. Neurophysiol. 6:99–110.Google Scholar
  20. 20.
    Katz, B. and Miledi, R. (1977): Proc. Roy. Soc. Lond. B196:59–72.CrossRefGoogle Scholar
  21. 21.
    Kuffler, S.W. and Yoshikami, D. (1975): J. Physiol. (Lond.) 251:465–482.Google Scholar
  22. 22.
    Miledi, R. (1960): J. Physiol. (Lond.) 151:1–23.Google Scholar
  23. 23.
    Miledi, R., Molenaar, P.C. and Polak, R. L. (1977): Proc. Roy. Soc. Lond. (in press).Google Scholar
  24. 24.
    Molenaar, P.C., Nickolson, V.J. and Polak, R. L. (1971): J. Physiol. (Lond.) 213:64P-65P.Google Scholar
  25. 25.
    Molenaar, P.C., Nickolson, V.J. and Polak, R.L. (1973): Brit. J. Pharmacol. 47:97–108.Google Scholar
  26. 26.
    Molenaar, P.C., Polak, R.L. and Nickolson, V.J. (1973): J. Neurochem. 21:667–678.CrossRefGoogle Scholar
  27. 27.
    Molenaar, P.C. and Polak, R.L. (1976): J. Neurochem. 26:95–99.PubMedGoogle Scholar
  28. 28.
    Polak, R.L. and Molenaar, P.C. (1974): J. Neurochem. 23:1295–1297.PubMedCrossRefGoogle Scholar
  29. 29.
    Polak, R. L., Molenaar, P.C. and Van Gelder, M. (1977): J. Neurochem. (in press).Google Scholar
  30. 30.
    Potter, L.T. (1970): J. Physiol. (Lond.) 206:145–166.Google Scholar
  31. 31.
    Welsch, F., Schmidt, D.E. and Dettbarn, W.D. (1972): Biochem. Pharmacol. 21:847–856.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. Miledi
    • 1
  • P. C. Molenaar
    • 2
  • R. L. Polak
    • 3
  1. 1.Department of BiophysicsUniversity College LondonLondonUK
  2. 2.Department of Pharmacology, Sylvius LaboratoriesUniversity of LeidenLeidenThe Netherlands
  3. 3.Medical Biological Laboratory TNORijswijkThe Netherlands

Personalised recommendations