Nerve Terminal Sacs from Torpedo Electric Organ: A New Preparation for the Study of Presynaptic Cholinergic Mechanisms at the Molecular Level

  • M. J. Dowdall
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


Much of contemporary knowledge concerning the general mechanisms involved in chemically mediated synaptic transmission is based on cholinergic transmission at the vertebrate neuromuscular junction. During the past two and one-half decades this synapse has been the subject of extensive, detailed investigations using mainly physiological, morphological and pharmacological techniques (27). The simple arrangement of a single neuronal type innervating a single effector cell type allows for interpretation of experimental findings uncomplicated by the presence of other synaptic contacts. For biochemical studies, however, the neuromuscular synapse is, for technical reasons, difficult to work with. The relatively small proportion of nervous tissue in muscle and the problems encountered in attempts to concentrate it from the bulk of the surrounding tissue (32) provide technical barriers of sufficient strength to have deterred many potential biochemical studies with this synapse. Instead, most of the detailed biochemistry of cholinergic transmission has come from work with mammalian brain where techniques for isolating synaptosomes and synaptic vesicles (31) have been of central importance.


Synaptic Vesicle Phospholipase Activity Presynaptic Membrane Choline Uptake Cholinergic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, L.A., Dowdall, M.J. and Mittag, T.W. (1975): Brain Res. 86:343–348.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker, L.A., Dowdall, M.J. and Whittaker, V. P. (1972): Biochem. J. 130:1063–1081.PubMedGoogle Scholar
  3. 3.
    Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.PubMedGoogle Scholar
  4. 4.
    Barker, L.A. and Mittag, T.W. (1976): Biochem. Pharmacol. 25:1931–1933.PubMedCrossRefGoogle Scholar
  5. 5.
    Barrantes, F.J., Sakmann, B., Bonner, R., Eibl, H. and Jovin, T.M. (1975): Proc. Nat. Acad. Sci. USA 72:3097–3101.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang, C. C. and Lee, C.Y. (1963): Arch. Int. Pharmacodyn. 144:241–257.PubMedGoogle Scholar
  7. 7.
    Cohen, J.B., Weber, M., Huchet, M. and Changeux, J.-P. (1972): FEBS Letts. 26:43–47.CrossRefGoogle Scholar
  8. 8.
    Collier, B., Barker, L.A. and Mittag, T.W. (1976): Molec. Pharmarcol. 12:340–344.Google Scholar
  9. 9.
    Collier, B., Lovat, S., Ilson, D., Barker, L. A. and Mittag, T. W. (1977): J. Neurochem. 28:331–339.PubMedCrossRefGoogle Scholar
  10. 10.
    Cull-Candy, S. G., Fohlman, J., Gustavsson, D., Lullmann-Rauch, R. and Thesleff, S. (1976): Neuroscience 1:175–180.PubMedCrossRefGoogle Scholar
  11. 11.
    Dowdail, M.J. (1975): In: Metabolic Compartmentation and Neurotransmission, (Eds.) S. Berl, D.D. Clark and D. Schneider, Plenum Press, New York, pp. 585–607.CrossRefGoogle Scholar
  12. 12.
    Dowdall, M.J. (1977): In: The Biochemistry of Defined Neuronal Systems, (Ed.) N.N. Osborne, Pergamon Press, New York, pp.177–216.Google Scholar
  13. 13.
    Dowdail, M.J., Barrantes, F.J., Stender, W. and Jovin, T.M. (1976): J. Neurochem. 27:1253–1255.CrossRefGoogle Scholar
  14. 14.
    Dowdail, M.J., Fox, F.Q., Wachtler, K., Whittaker, V. P. and Zimmermann, H. (1976): Cold Spring Harb. Symp. Quant. Biol. 40:969.Google Scholar
  15. 15.
    Dowdail, M.J. and Simon, E.J. (1973): J. Neurochem. 21:969–982.CrossRefGoogle Scholar
  16. 16.
    Dowdail, M.J. and Zimmermann, H. (1976): Exptl. Brain Res. 24:8–9.Google Scholar
  17. 17.
    Dowdail, M.J. and Zimmerman, H. (1977): Neuroscience (in press).Google Scholar
  18. 18.
    Fohlman, J. and Eaker, D. (1977): Toxin (in press).Google Scholar
  19. 19.
    Fohlman, J., Eaker, D., Karlsson, E. and Thesleff, S. (1976): Eur. J. Biochem. 68:457–469.PubMedCrossRefGoogle Scholar
  20. 20.
    Haga, T. (1971): J. Neurochem. 18:781–798.PubMedCrossRefGoogle Scholar
  21. 21.
    Haga, T. and Noda, H. (1973): Biophys. Biochim. Acta 291:564–575.CrossRefGoogle Scholar
  22. 22.
    Halpert, J. and Eaker, D. (1975): J. Biol. Chem. 250:6990–6997.PubMedGoogle Scholar
  23. 23.
    Halpert, J. and Eaker, D. (1976): J. Biol. Chem. 251:7343–7347.PubMedGoogle Scholar
  24. 24.
    Harris, J.B., Karlsson, E. and Thesleff, S. (1973): Brit. J. Pharmacol. 47:141–146.Google Scholar
  25. 25.
    Israel, M., Gautron, J. and Lesbats, B. (1970): J. Neurochem. 17:1441–1450.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamenskaya, M.A. and Thesleff, S. (1974): Acta Physiol. Scand. 90:716–724.PubMedCrossRefGoogle Scholar
  27. 27.
    Katz, B. (1966): Nerve, Muscle and Synapse, McGraw-Hill, New York.Google Scholar
  28. 28.
    Kelly, R.B. and Brown, F.R. (1974): J. Neurobiol. 5:135–150.PubMedCrossRefGoogle Scholar
  29. 29.
    Michaelson, D.M. and Sokolovsky, M. (1976): Biochem. Biophys. Res. Commun. 73:25–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Rang, H. P. (1975): Quart. Rev. Biophys. 7:283–399.CrossRefGoogle Scholar
  31. 31.
    Whittaker, V. P. (1965): Prog. Biophys. Molec. Biol. 15:39–91.CrossRefGoogle Scholar
  32. 32.
    Whittaker, V. P. (1969): In: Handbook of Neurochemistry, Vol. 12 (Ed.) A. Lajtha, Plenum Press, New York, pp. 327–364.Google Scholar
  33. 33.
    Whittaker, V. P., Essman, W.E. and Dowe, G.H. C. (1972): Biochem. J. 128:833–846.PubMedGoogle Scholar
  34. 34.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21:1355–1374.PubMedCrossRefGoogle Scholar
  35. 35.
    Zimmermann, H. and Dowdail, M.J. (1975): Abst. 5th Int. Meet. Int. Soc. Neurochem., p. 536.Google Scholar
  36. 36.
    Zimmermann, H. and Dowdail, M.J. (1977): Neuroscience (in press).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • M. J. Dowdall
    • 1
  1. 1.Neurochemistry DivisionMax-Planck Institute for Biophysical ChemistryGottingenFederal Republic of Germany

Personalised recommendations