Advertisement

Acetylcholine and Cyclic GMP

  • K. Krnjevic
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)

Abstract

This article examines some of the evidence for or against the hypothesis that guanosine 3′,5′-cyelic monophosphate (cGMP) is the intracellular mediator of the actions of acetylcholine (ACh), with particular emphasis on the situation in the mammalian nervous system. This idea arose following the widespread acceptance of a parallel role of adenosine 3′, 5′-cyclic monophosphate (cAMP) as the intracellular mediator of catecholaminergic (especially ß-receptor) activation (32). It was first put forward by George et al. (8) when they observed a correlation between the depressant effects of ACh on the rat heart and its cGMP content; and it was enthusiastically adopted and promoted by Greengard and his collaborators (11, 12, 20). The possibility that, in a variety of tissues, cAMP and cGMP systematically act in opposite fashion, thus providing the mechanism for “bidirectional” control of intracellular processes, has been much discussed (9, 10).

Keywords

Kainic Acid cGMP Level Cyclic Monophosphate Intracellular Mediator Mammalian Nervous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, C.M. (1966): J. Gen. Physiol. 50:491–503.PubMedCrossRefGoogle Scholar
  2. 2.
    Baker, P.F. (1972): Prog. Biophys. Molec. Biol. 25:177–223.CrossRefGoogle Scholar
  3. 3.
    Berridge, M.J. (1975): In: Advances in Cyclic Nucleotide Research Vol.6 (Eds.) P. Greengard and G. A. Robison, Raven Press, N. Y., pp.2–98.Google Scholar
  4. 4.
    Biggio, G. and Guidotti, A. (1976): Brain Res. 107:365–373.PubMedCrossRefGoogle Scholar
  5. 5.
    Clark, R.B. and Perkins, J. P. (1971): Proc. Nat. Acad. Sci. (USA) 68:2757–2760.CrossRefGoogle Scholar
  6. 6.
    Durham, J. P., Baserga, R. and Butcher, F.R. (1974): Biochim. Biophys. Acta 372:196–217.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferrendelli, J.A., Kinscherf, D.A. and Chang, M.M. (1975): Brain Res. 84:63–73.PubMedCrossRefGoogle Scholar
  8. 8.
    George, W.J., Poison, J. B., O’Toole, A.G. and Goldberg, N.D. (1970): Proc. Nat. Acad. Sci. (USA) 66:398–403.CrossRefGoogle Scholar
  9. 9.
    Goldberg, N.D., Haddox, M.K., Nicol, S. E., Glass, D.B., Sanford, F.A., Kuehl, F.A. and Estensen, R. (1975): In: Advances in Cyclic Nucleotide Research. Vol.5. (Eds.) G.I. Drummond, P. Greengard and G. A. Robison, Raven Press, New York, pp. 307–330.Google Scholar
  10. 10.
    Goldberg, N.D., O’Dea, R.F. and Haddox, M.K. (1973): In: Advances in Cyclic Nucleotide Research. Vol.3, (Eds.) P. Greengard and G. A. Robison, Raven Press, New York, pp. 155–223.Google Scholar
  11. 11.
    Greengard, P. (1973): In: Protein Phosphorylation in Control Mechanisms. (Eds.) F. Huijing and E.Y.C. Lee, Academic Press, New York, pp. 145–174.Google Scholar
  12. 12.
    Greengard, P. (1976): Nature (Lond.) 260:101–108.CrossRefGoogle Scholar
  13. 13.
    Kebabian, J.W., Bloom, F.E. and Steiner, A. L. (1975): Science 190:157–159.PubMedCrossRefGoogle Scholar
  14. 14.
    Kebabian, J.W., Steiner, A. L. and Greengard, P. (1975): J. Pharmacol. Exp. Ther. 193:474–488.PubMedGoogle Scholar
  15. 15.
    Kobayashi, H. and Libet, B. (1970): J. Physiol. 208:353–372.PubMedGoogle Scholar
  16. 16.
    Krnjevic, K., Puil, E. and Werman, R. (1975): Canad. J. Physiol. Pharmacol. 53:1214–1218.CrossRefGoogle Scholar
  17. 17.
    Krnjevic, K., Puil, E. and Werman, R. (1976): Canad. J. Physiol. Pharmacol. 54:172–176.CrossRefGoogle Scholar
  18. 18.
    Krnjevic, K., Pumain, R. and Renaud, L. (1971): J. Physiol. 215: 247–268.PubMedGoogle Scholar
  19. 19.
    Krnjevic, K. & VanMeter, W. (1976): Canad. J. Physiol. Pharmacol. 54:416–421.CrossRefGoogle Scholar
  20. 20.
    Lee, T.-P., Kuo, J.F. and Greengard, P. (1972): Proc. Nat. Acad. Sci. (USA) 69:3287–3291.CrossRefGoogle Scholar
  21. 21.
    McAfee, D.A. and Greengard, P. (1972): Science 178:310–312.PubMedCrossRefGoogle Scholar
  22. 22.
    Nawrath, H. (1976): Nature (Lond.) 262:509–511.CrossRefGoogle Scholar
  23. 23.
    O’Dea, R.F. and Zatz, M. (1976): Proc. Nat. Acad. Sci. (USA) 73:3398–3402.CrossRefGoogle Scholar
  24. 24.
    Phillis, J.W., Kostopoulos, G.K. and Limacher, J.J. (1974): Canad. J. Physiol. Pharmacol. 52:1226–1229.CrossRefGoogle Scholar
  25. 25.
    Schmidt, M.J., Ryan, J.J. and Molloy, B. B. (1976): Brain Res. 112:113–126.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt, M.J., Thornberry, J.F. and Molloy, B. B. (1977): Brain Res. 121:182–189.PubMedCrossRefGoogle Scholar
  27. 27.
    Schultz, G., Hardman, J.G., Hurwitz, L. and Sutherland, E.W. (1972): Fed. Proc. 32:773.Google Scholar
  28. 28.
    Schultz, G., Hardman, J. G., Schultz, K., Davis, J.W. and Sutherland, E.W. (1973): Proc. Nat. Acad. Sci. (USA) 70:1721–1725.CrossRefGoogle Scholar
  29. 29.
    Schwartz, J. P. (1976): J. Cyclic Nucleotide Res. 2:287–296.PubMedGoogle Scholar
  30. 30.
    Shinnick-Gallagher, P., Williams, B.J. and Gallagher, J. P. (1976): Neurosci. Abst. 2: 800.Google Scholar
  31. 31.
    Stone, T.W., Taylor, D.A. and Bloom, F.E. (1975): Science 187: 845–847.PubMedCrossRefGoogle Scholar
  32. 32.
    Sutherland, E.W. and Robison, G.A. (1966): Pharmacol. Rev. 18: 145–161.PubMedGoogle Scholar
  33. 33.
    Swartz, B. and Woody, C.D. (1976): Neurosci. Abst. 2:802.Google Scholar
  34. 34.
    Weight, F.F. (1974): Science 186:942–944.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams, R.E. (1976): Science 192:471–474.CrossRefGoogle Scholar
  36. 36.
    Zieglgansberger, W. and Reiter, C. (1974): Neuropharmacology 13: 519–527.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • K. Krnjevic
    • 1
  1. 1.Department of Anaesthesia ResearchMcGill UniversityMontrealCanada

Personalised recommendations