Structure of Acetylcholinesterase: Its Relationship to the Postsynaptic Membrane

  • P. Taylor
  • J. Lwebuga-Mukasa
  • S. Lappi
  • H. A. Berman
Part of the Advances in Behavioral Biology book series (ABBI, volume 24)


Acetylcholinesterase (A Ch E), when extracted with high ionic strength solutions from Torpedo and Electrophorus electric organs and from mammalian skeletal muscle, exists in several molecular forms (6,12,19,25,27). Massoulie and Rieger initially demonstrated in Electrophorus three species with sedimentation constants of 8S, 14S and 18S (19). In more recent studies Massoulie and his colleagues have observed that the predominant 18S species consists of three sets of tetrameric head units, each of which is attached to a filament that joins to a tail of 50 × 2 nm in dimensions (5). Each subunit of the head is 80,000 in molecular weight so that the assembled 18S species has a molecular weight greater than 1 million. Although thought not to be of high molecular weight, the tail unit markedly affects the hydrodynamic properties of the enzyme forms. Treatment of the various AChE species with trypsin or other proteolytic enzymes gives rise to a common species with a sedimentation constant of 11S and a molecular weight near 330,000 (8, 20). Electron microscopy reveals that the US species is devoid of a tail unit and in contrast to the other forms, it will not aggregate in solutions of low ionic strength (6, 25). The US form is probably analogous to the enzyme purified in early years when A Ch E was dissociated from the membrane by extensive autolysis (8).


Sodium Dodecyl Sulfate Postsynaptic Membrane Electric Organ Sedimentation Constant High Molecular Weight Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anglister, L., Rogozinski, S. and Silman, I. (1976): FEBS Lett. 69:129–132.PubMedCrossRefGoogle Scholar
  2. 2.
    Berman, H.A. and Taylor, P. (1977): Fed. Proc. 36:2892.Google Scholar
  3. 3.
    Betz, W. and Sakmann, B. (1973): J. Physiol. 230:673–688.PubMedGoogle Scholar
  4. 4.
    Byers, P. H., Click, E.M., Harper, E. and Bornstein, P. (1975): Nat. Acad. Sci. 72:3009–3012.CrossRefGoogle Scholar
  5. 5.
    Cartaud, J., Reiger, F., Bon, S. and Massoulie, J. (1975): Brain Res. 88:127–130.PubMedCrossRefGoogle Scholar
  6. 6.
    Dudai, Y., Herzberg, M. and Silman, I. (1973): Proc. Nat. Acad. Sci. 70:2473–2476.PubMedCrossRefGoogle Scholar
  7. 7.
    Dudai, Y. and Silman, I. (1974): Biochem. Biophys. Res. Commun. 59:117–124.PubMedCrossRefGoogle Scholar
  8. 8.
    Dudai, Y., Silman, I., Kalderon, N. and Blumberg, S. (1972): Biochem. Biophys. Acta 268:138–157.PubMedGoogle Scholar
  9. 9.
    Duguid, J.R. and Raftery, M.A. (1973): Biochemistry 12:3593–3597.PubMedCrossRefGoogle Scholar
  10. 10.
    Fertuck, H. and Salpeter, M. (1974): Proc. Nat. Acad. Sci. 71: 1376–1378.PubMedCrossRefGoogle Scholar
  11. 11.
    Furthmayr, H. and Timpl, R. (1971): Anal. Biochem. 41:510–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall, Z. (1972): Ann. Rev. Biochem. 41:925–952.PubMedCrossRefGoogle Scholar
  13. 13.
    Hall, Z. and Kelley, R.B. (1971): Nature (Lond.) 232:62–63.Google Scholar
  14. 14.
    Harper, E. (1974): Israel J. Chem. 12:515–528.Google Scholar
  15. 15.
    Harper, E. and Kang, A. (1970): Biochem. Biophys. Res. Commun. 41:482–487.PubMedCrossRefGoogle Scholar
  16. 16.
    Kefalides, N.A. (1973): Int. Rev. Connect. Tissue Res. 6:63–107.PubMedGoogle Scholar
  17. 17.
    Lwebuga-Mukasa, J., Harper, E. and Taylor, P. (1976): Biochemistry 15:4736–4741.PubMedCrossRefGoogle Scholar
  18. 18.
    Lwebuga-Mukasa, J., Lappi, S. and Taylor, P. (1976): Biochemistry 15:1425–1434.PubMedCrossRefGoogle Scholar
  19. 19.
    Massoulie, J. and Rieger, F. (1969): Eur. J. Biochem. 14:430–439.CrossRefGoogle Scholar
  20. 20.
    Massoulie, J., Rieger, F. and Bon, S. (1971): Eur. J. Biochem. 21:542–551.PubMedCrossRefGoogle Scholar
  21. 21.
    Norwack, H. and Nordwig, A. (1974): Eur. J. Biochem. 45:333–342.CrossRefGoogle Scholar
  22. 22.
    Olsen, B.R., Alper, R. and Kefalides, N.A. (1973): Eur. J. Biochem. 38:220–226.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfenninger, K. H. (1973): Prog. Histochem. Cytoehem. 5:1–71.Google Scholar
  24. 24.
    Reid, K. B.M. and Porter, R.R. (1975): In: Contemporary Topics in Molecular Immunology, Vol.4, (Eds.)F.P. Inman and W. J. Mandy, Plenum Press, New York, pp. 1–22.Google Scholar
  25. 25.
    Reiger, F., Bon, S. and Massoulie, J. (1973): Eur. J. Biochem. 34:539–547.CrossRefGoogle Scholar
  26. 26.
    Rosenberry, T.L., Chen, Y. T. and Bock, E. (1974): Biochemistry 3:3068–3079.CrossRefGoogle Scholar
  27. 27.
    Taylor, P., Jones, J. W. and Jacobs, N.M. (1974):Molec. Pharmacol. 10:93–107.Google Scholar
  28. 28.
    Voss, H.F., Ashani, Y. and Wilson, I.B. (1975): Meth. Enzymol. 34:581–591.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • P. Taylor
    • 1
  • J. Lwebuga-Mukasa
    • 2
  • S. Lappi
    • 1
  • H. A. Berman
    • 1
  1. 1.Division of Pharmacology, Department of MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of MedicineYale UniversityNew HavenUSA

Personalised recommendations