Advertisement

Dendritic Changes in Aging Rat Brain: Pyramidal Cell Dendrite Length and Ultrastructure

  • Martin L. Feldman
Part of the Advances in Behavioral Biology book series (ABBI, volume 23)

Abstract

For the past several years, studies have been underway to investigate age-related cytomorphological changes that occur in a highly specified cell population. This population consists of the pyramidal neurons of layers III and V in rat visual cortex (area 17, Krieg, 1946a, b; Schober and Winkelmann, 1975). The restriction of cell population is based upon the abundance of evidence that the processes of aging may vary among cell groups in mode, severity, and tempo. In view of this fact, it seems clear that one avenue towards meaningful progress in understanding the effects of aging in the brain is thorough study of the totality of aging changes affecting particular cell types.

Keywords

Layer Versus Dendritic Tree Apical Dendrite Dendritic Branch Dendritic Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondareff, W., Geinisman, Y. and Telser, A. Age-related changes in axonal transport of glycoprotein in the rat septodentate pathway. J. Cell Biol., 70:332, 1976.Google Scholar
  2. Colonnier, M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res., 9:268–287, 1968.PubMedCrossRefGoogle Scholar
  3. Feldman, M. L. Serial thin sections of pyramidal apical dendrites in the cerebral cortex: spine topography and related observations. Anat. Rec., 181:354–355, 1975.Google Scholar
  4. Feldman, M. L. Aging changes in the morphology of cortical dendrites. In: Neurobiology of Aging. (Eds. Terry, R. D. and Gershon, S.), Aging, vol. 3, Raven Press, New York, 1976.Google Scholar
  5. Feldman, M. L. and Dowd, C. Loss of dendritic spines in aging cerebral cortex. Anat. Embryol., 148:279–301, 1975.PubMedCrossRefGoogle Scholar
  6. Feldman, M. L. and Dowd, C. Aging in rat visual cortex: light microscopic observations in layer V pyramidal apical dendrites. Anat. Rec., 178:355, 1974.Google Scholar
  7. Feldman, M. L. and Peters, A. A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res., 77:55–76, 1974.PubMedCrossRefGoogle Scholar
  8. Fleischhauer, K., Petsche, H. and Wittkowski, W. Vertical bundles of dendrites in the neocortex. Z. Anat. Entwickl.-Gesch., 136:213–223, 1972.CrossRefGoogle Scholar
  9. Geinisman, Y. and Bondareff, W. Decrease in the number of synapses in the senescent brain: a quantitative electron microscopic analysis of the dentate gyrus molecular layer in the rat. Mechan. Ageing and Develop., 5:11–23, 1976.CrossRefGoogle Scholar
  10. Gelfan, S., Kao, G. and Ling, H. The dendritic tree of spinal neurons in dogs with experimental hind-limb rigidity. J. Comp. Neur., 146:143–174, 1972.PubMedCrossRefGoogle Scholar
  11. Gentschev, T. and Sotelo, C. Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study. Brain Res., 62:37–60, 1973.PubMedCrossRefGoogle Scholar
  12. Ghetti, B., Horoupian, D. S. and Wisniewski, H. M. Acute and long-term transne1ronal response of dendrites of lateral geniculate neurons following transection of the primary visual afferent pathway. In: Physiology and Pathology of Dendrites. (Ed. Kreutzberg, G. W.), Advances in Neurology, vol. 12, Raven Press, New York, 1975.Google Scholar
  13. Globus, A. and Scheibel, A. B. Pattern and field in cortical structure: the rabbit. J. Comp. Neur., 131:155–172, 1967a.PubMedCrossRefGoogle Scholar
  14. Globus, A. and Scheibel, A. B. Synaptic loci on parietal cortical neurons: terminations of corpus callosum fibers. Science, 156; 1127–1129, 1967b.PubMedCrossRefGoogle Scholar
  15. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature, 183:1592–1593, 1959.PubMedCrossRefGoogle Scholar
  16. Krieg, W. J. S. Connections of the cerebral cortex. I. Albino rat. A. Topography of the cortical areas. J. Comp. Neur., 84:221–275, 1946a.PubMedCrossRefGoogle Scholar
  17. Krieg, W. J. S. Connections of the cerebral cortex. I. Albino rats. B. Structure of the cortical areas. J. Comp. Neur., 84:277–324, 1946b.PubMedCrossRefGoogle Scholar
  18. Kreutzberg, G. W., Schubert, P., Toth, L. and Rieske, E. Intra-dendritic transport to postsynaptic sites. Brain Res., 62:399–404, 1973.PubMedCrossRefGoogle Scholar
  19. Kreutzberg, G. W., Toth, L. and Kaiya, H. Acetylcholinesterase as a marker for dendritic transport and dendritic secretion. In: Physiology and Pathology of Dendrites. (Ed. Kreutzberg, G. W.), Advances in Neurology, vol. 12, Raven Press, New York, 1975.Google Scholar
  20. Liu, C. N. and Liu, C. Y. Role of afferente in maintenance of dendritic morphology. Anat. Rec., 169:369, 1971.Google Scholar
  21. Mehraein, P., Yamada, M. and Tarnowska-Dziduszko, E. Quantitative studies on dendrites in Alzheimer’s disease and senile dementia. In: Physiology and Pathology of Dendrites. (Ed. Kreutzberg, G. W.), Advances in Neurology, vol. 12, Raven Press, New York, 1975.Google Scholar
  22. Peters, A. and Feldman, M. L. The projection of the lateral genicu-late nucleus to area 17 of the rat cerebral cortex. I. General description. J. Neurocytol., 5:63–84, 1976.PubMedCrossRefGoogle Scholar
  23. Peters, A. and Walsh, T. M. A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J. Comp. Neur., 144:253–268, 1972.PubMedCrossRefGoogle Scholar
  24. Sadlack, F. J. Environmental influences on the developing visual cortex of the kitten. Anat. Rec., 172:397, 1972.Google Scholar
  25. Schober, W. and Winkelmann, E. Der visuelle Kortex der Ratte, Cyto-architektonik und sterotaktische Parameter. Z. mikrosk.-anat. Forsch. (Leipzig), 89:431–446, 1975.Google Scholar
  26. Schubert, P., Kreutzberg, G. W. and Lux, H. D. Neuroplasmic transport in dendrites: Effect of colchicine on morphology and physiology of motoneurons in the cat. Brain Res., 47:331–343, 1972.PubMedCrossRefGoogle Scholar
  27. Scheibel, M. E. and Scheibel, A. B. Structural changes in the aging brain. In: Aging. (Eds. Brody, H., Harman, D. and Ordy, J.M.), vol. 1, Raven Press, New York, 1975.Google Scholar
  28. Shelanski, M. L. Neurochemistry of aging: Review and prospectus. In: Neurobiology of Aging. (Eds. Terry, R. D. and Gershon, S.), Aging, vol. 3, Raven Press, New York, 1976.Google Scholar
  29. Sholl, D. A. The Organization of the Cerebral Cortex. Methuen, London, 1956.Google Scholar
  30. Siegel, S. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New York, 1956.Google Scholar
  31. Terry, R. D. and Wisniewski, H. The ultrastructure of the neuro-fibrillary tangle and the senile plaque. In: Alzheimer’s Disease and Related Conditions. (Eds. Wolstenholme, G. E. W. and O’Connor, M.), Churchill, London, 1970.Google Scholar
  32. Valverde, F. Structural changes in the area striata of the mouse after enucleation. Brain Res., 5:274–292, 1968.Google Scholar
  33. Walberg, F. Role of normal dendrites in removal of degenerating terminal boutons. Exp. Neurol., 8:111–124, 1963.CrossRefGoogle Scholar
  34. Wann, D. F., Woolsey, T. A., Dierker, M. L. and Cowan, W. M. An online digital-computer system for the semiautomatic analysis of Golgi-impregnated neurons. I.E.E.E. Trans. Biomed. Engin., BME-20:233–247, 1973.CrossRefGoogle Scholar
  35. Woolsey, T. A., Dierker, M. L. and Wann, D. F. Mouse Sml Cortex: Qualitative and quantitative classification of Golgi-impregnated barrel neurons. Proc. Nat. Acad. Sci., 72:2165–2169, 1975.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Martin L. Feldman
    • 1
  1. 1.Department of Anatomy and Gerontology CenterBoston University School of MedicineBostonUSA

Personalised recommendations