Neurofibrillary Pathology: An Update

  • Khalid Iqbal
  • Henryk M. Wisniewski
  • Inge Grundke-Iqbal
  • Robert D. Terry
Part of the Advances in Behavioral Biology book series (ABBI, volume 23)


Neurofibril is the term coined by light microscopists to refer to the fibrillary structures in the neuron. These neurofibers correspond to a variety of linear structures as seen with the electron microscope. The principal fibrils of the normal mature neuron are the neurotubules and the neurofilaments (Fig. 1).


Down Syndrome Neurofibrillary Tangle Paired Helical Filament Neuronal Perikaryon Neurofibrillary Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barondes, S.H. Incorporation of Radioactive Glucosamine into Macromolecules at Nerve Endings. J. Neurochem. 15:699–706, 1968.PubMedCrossRefGoogle Scholar
  2. Blessed, G., Tomlinson, B.E. and Roth, M. The Association Between Quantitative Measures of Dementia and of Senile Change in the Cerebral Gray Matter of Elderly Subjects. Brit. J. Psychiat. 114:797–811, 1968.PubMedCrossRefGoogle Scholar
  3. Blitz, A.L. and Fine, R.E. Muscle-like Contractile Proteins and Tubulin in Synaptosomes. Proceed. Natl. Acad. Sci. USA, 71: 4472–4476, 1974.CrossRefGoogle Scholar
  4. Borisy, G.G., Olmsted, J.B., Marcum, J.M. and Allen, C. Microtubule Assembly in vitro. Fed. Proc. 33:167–174, 1974.PubMedGoogle Scholar
  5. Borisy, G.G., Marcum, J.M., Olmsted, J.B., Murphy, D.B. and Johnson, K.A. Purification of Tubulin and Associated High Molecular Weight Proteins from Porcine Brain and Characterization of Microtubule Assembly in vitro. Ann. N. Y. Acad. Sci. 253:107–132, 1975.PubMedCrossRefGoogle Scholar
  6. Bryan, J. and Wilson, L. Are Cytoplasmic Microtubules Heteropolymers? Proc. Nat. Acad. Sci. USA, 68:1762–1766, 1971.PubMedCrossRefGoogle Scholar
  7. Bryan, J. Preliminary Studies on Affinity Labeling of the Tubulin-Colchicine Binding Site. Ann. N. Y. Acad. Sci. 253:247–259, 1975.PubMedCrossRefGoogle Scholar
  8. David-Ferreira, J.F., David-Ferreira, K.L., Gibbs, C.J., Jr. and Morris, J.A. Scrapie in Mice: Ultrastructural Observations in the Cerebral Cortex. Proc. Soc. Exper. Biol. Med. 127:313–320, 1968.Google Scholar
  9. Davison, P.F. and Taylor, E.W. Physical-Chemical Studies of Proteins of Squid Nerve Axoplasm, with Special Reference to the Axon Fibrous Protein. J. Gen. Physiol. 43:801–823, 1960.PubMedCrossRefGoogle Scholar
  10. Davison, P.F. and Winslow, B. The Protein Subunit of Calf Brain Neurofilament. J. Neurobiol. 5:119–133, 1974.PubMedCrossRefGoogle Scholar
  11. Devries, G.H., Norton, W.T. and Raine, C.S. Axons: Isolation from Mammalian Central Nervous System. Science 175:1370–1372, 1972.PubMedCrossRefGoogle Scholar
  12. Dutton, G. and Barondes, S.H. Microtubular Protein: Synthesis and Metabolism in Developing Brain. Science 166:1637–1638, 1969.PubMedCrossRefGoogle Scholar
  13. Feit, H. and Barondes, S.H. Colchicine-Binding Activity in Particulate Fractions of Mouse Brain. J. Neurochem. 17:1355–1364, 1970.PubMedCrossRefGoogle Scholar
  14. Feit, H., Slusarek, L. and Shelanski, M.L. Heterogeneity of Tubulin Subunits. Proc. Nat. Acad. Sci., USA, 68:2028–2031, 1971.CrossRefGoogle Scholar
  15. Field, E.J., Mathews, J.D., and Raine, C.S. Electron Microscopic Observations on the Cerebellar Cortex in Kuru. J. Neurol. Sci. 8:209–224, 1969.PubMedCrossRefGoogle Scholar
  16. Gaskin, F., Cantor, C.R. and Shelanski, M.L. Turbidimetric Studies of the in vitro Assembly and Disassembly of Porcine Neurotubules. J. Mol. Biol. 89:737–758, 1974.PubMedCrossRefGoogle Scholar
  17. Goodman, D.B.P., Rasmussen, H., DiPells, F. and Guthrow, C.E. Cyclic Adenosine 3:5-monophosphate-stimulated Phosphorylation of Isolated Neurotubule Subunits. Proc. Nat. Acad. Sci., USA, 67:652–659, 1970.CrossRefGoogle Scholar
  18. Hirano, A., Malamud, N., Elizan, T.S. and Kurland, L.T. Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex on Guam. Arch. Neurol. 15:35–51, 1966.PubMedCrossRefGoogle Scholar
  19. Hirano, A., Dembitzer, H.M. and Kurland, L.T. The Fine Structure of Some Intraganglion Alterations. J. Neuropath. & Exper. Neurol. 27:167–182, 1968.CrossRefGoogle Scholar
  20. Hirano, A. Neurofibrillary Changes in Conditions Related to Alzheimer’s Disease, In: Alzheimer’s Disease and Related Conditions, (G.E.W. Wolstenholme and M. O’Connor, Eds.), London, J.&A. Churchill, Ltd. pp. 185–207, 1970.Google Scholar
  21. Hughes, J.T. and Jerome, D. Ultrastructure of Anterior Horn Motor Neurones in the Hirano-Kurland-Sayre Type of Combined Neurological System Degeneration. J. Neurol. Sci. 13:389–399, 1971.PubMedCrossRefGoogle Scholar
  22. Inoue, S. and Sato, H. Cell Motility by Labile Association of Molecules. J. Gen. Physiol., Suppl. 50:259–292, 1967.PubMedCrossRefGoogle Scholar
  23. Iqbal, K. and Tellez-Nagel, I. Isolation of Neurons and Glial Cells from Normal and Pathological Human Brains. Brain Res. 45:296–301, 1972.PubMedCrossRefGoogle Scholar
  24. Iqbal, K., Wisniewski, H.M., Shelanski, M.L., Brostoff, S., Liwinicz, B.H. and Terry, R.D. Protein Changes in Senile Dementia. Brain Res. 77:337–343, 1974.PubMedCrossRefGoogle Scholar
  25. Iqbal, K., Wisniewski, H.M., Grundke-Iqbal, I., Korthals, J.K. and Terry, R.D. Chemical Pathology of Neurofibrils. Neurofibrillary Tangles of Alzheimer’s Presenile-Senile Dementia. J. Histochem. Cytochem. 23:563–569, 1975.PubMedCrossRefGoogle Scholar
  26. Iqbal, K., Grundke-Iqbal, I., Wisniewski, H.M. and Terry, R.D. On Neurofilament and Neurotubule Proteins from Human Autopsy Tissue, In Press, 1976a.Google Scholar
  27. Iqbal, K., Grundke-Iqbal, I., Wisniewski, H.M., Korthals, J.K. and Terry, R.D. Chemistry of Neurofibrous Proteins in Aging. In: Neurobiology of Aging, (Eds. S. Gershon and R.D. Terry), Raven Press, New York, pp. 351–360, 1976b.Google Scholar
  28. Iqbal, K., Grundke-Iqbal, I., Wisniewski, H.M. and Terry, R.D. Chemical Relationship of the Paired Helical Filaments of Alzheimer’s Dementia to Human Normal Neurofilaments and Neuro-tubules. Brain Res., In Press, 1976c.Google Scholar
  29. Kidd, M. Paired Helical Filaments in Electron Microscopy of Alzheimer’s Disease. Nature 197:192–193, 1963.PubMedCrossRefGoogle Scholar
  30. Kidd, M. Alzheimer’s Disease-An Electron Microscopical Study. Brain 87:307–320, 1964.PubMedCrossRefGoogle Scholar
  31. Lee, J.C. and Frigon, R.P. The Chemical Characterization of Calf Brain Microtubule Protein Subunits. J. Biol. Chem. 248:7253–7262, 1973.PubMedGoogle Scholar
  32. Mandybur, T.I., Nagpaul, A.S., Pappas, Z. and Niklowitz, W.J. Alzheimer Neurofibrillary Change in Subacute Sclerosing Panencepha-litic. J. Neuropath. & Exper. Neurol. 35:300, 1976.CrossRefGoogle Scholar
  33. Ohara, P.T. Electron Microscopical Study of the Brain in Down’s Syndrome. Brain 95:681–684, 1972.PubMedCrossRefGoogle Scholar
  34. Olmsted, J.B. and Borisy, G.G. Microtubules. Ann. Rev. Biochem. 42:507–540, 1973.PubMedCrossRefGoogle Scholar
  35. Olson, M.I. and Shaw, Ch-M. Presenile Dementia and Alzheimer’s Disease in Mongolism. Brain 92:147–156, 1969.PubMedCrossRefGoogle Scholar
  36. Raine, C.S., Poduslo, S.E. and Norton, W.T. The Ultrastructure of Purified Preparations of Neurons and Glial Cells. Brain Res. 27:11–24, 1971.PubMedCrossRefGoogle Scholar
  37. Rewcastle, N.B. and Ball, M.J. Electron Microscopic Structure of the “Inclusion Bodies” in Pick’s Disease. Neurology 18: 1205–1213, 1968.PubMedCrossRefGoogle Scholar
  38. Roth, M., Tomlinson, B.E. and Blessed, G. Correlation Between Scores for Dementia and Counts of Senile Plaques in Cerebral Gray Matter of Elderly Subjects. Nature 209:109–110, 1966.PubMedCrossRefGoogle Scholar
  39. Schmitt, F.O. and Samson, F.E., Jr. Neuronal Fibrous Proteins. Neurosci. Res. Progr. Bull. 6:113–219, 1968.Google Scholar
  40. Schochet, S.S., Jr., Lampart, P.W. and Lindenberg, R. Fine Structure of the Pick and Hirano Bodies in a Case of Pick’s Disease. Acta Neuropath. 11:330–337, 1968a.PubMedCrossRefGoogle Scholar
  41. Schochet, S.S., Jr., Lampert, P.W. and Earle, K.M. Neuronal Changes. Induced by Intrathecal Vincristine Sulfate. J. Neuropath. & Exper. Neurol. 27:645–658, 1968b.CrossRefGoogle Scholar
  42. Schochet, S.S., Jr., Hartman, J.M., Ladewig, P.P. and Karle, K.M. Intraneuronal Conglomerates in Sporadic Motor Neuron Disease: A Light and Electron Microscopic Study. Arch. Neurol. 20:548–553, 1969.PubMedCrossRefGoogle Scholar
  43. Schochet, S.S., Jr., Lampert, D.W. and McCormick, W.F. Neurofibrill-ary Tangles in Patients with Down’s Syndrome: A Light and Electron Microscopic Study. Acta Neuropathol. 23:342–346, 1973.PubMedCrossRefGoogle Scholar
  44. Schook, W.J. and Norton, W.T. On the Composition of Axonal Neurofilaments. Transac. Am. Soc. Neurochem. 6:214, 1975.Google Scholar
  45. Shelanski, M.L. and Wisniewski, H.M. Neurofibrillary Degeneration induced by Vincristine Therapy. Arch. Neurol. 20:199–206, 1969.PubMedCrossRefGoogle Scholar
  46. Shelanski, M.L. and Taylor, E.W. Biochemistry of Neurofilaments and Neurotubules. In: Ciba Foundation Symposium on Alzheimer’s Disease and Related Conditions, (Eds. G.E.W. Wolstenholme and M. O’Connor), J.&.A. Churchill, London, pp. 249–266, 1970.Google Scholar
  47. Shelanski, M.L., Albert, S., Devries, G.H. and Norton, W.T. Isolation of Filaments from Brain. Science 174:1242–1245, 1971.PubMedCrossRefGoogle Scholar
  48. Stadler, J. and Franke, W.W. Characterization of the Colchicine Binding of Membrane Fractions from Rat and Mouse Liver. J. Cell Biol. 60:297–303, 1974.PubMedCrossRefGoogle Scholar
  49. Tellez-Nagel, I. and Wisniewski, H.M. Ultrastructure of Neurofibrillary Tangles in Steele-Richardson-Olszewski Syndrome. Arch. Neurol. 29:324–327, 1973.PubMedCrossRefGoogle Scholar
  50. Terry, R.D. The Fine Structure of Neurofibrillary Tangles in Alzheimer’s Disease. J. Neuropath. & Exper. Neurol. 22:629–642, 1963.CrossRefGoogle Scholar
  51. Terry, R.D., Gonatas, N.K. and Weiss, M. Ultrastructural Studies in Alzheimer’s Presenile Dementia. Am. J. Path. 44:269–297, 1964.PubMedGoogle Scholar
  52. Tomlinson, B.E., Blessed, G. and Roth, M. Observations on the Brains of Demented Old People. J. Neurol. Sci. 11:205–242, 1970.PubMedCrossRefGoogle Scholar
  53. Trapp, B.D., Dwyer, B. and Bernsohn, J. Light and Electron Microscopic Examination of Isolated Neurons, Astrocytes and Oligodendrocytes. Neurobiology 5:235–248, 1975.PubMedGoogle Scholar
  54. Wisniewski, H.M., Shelanski, M.L. and Terry, R.D. Effects of Mitotic Spindle Inhibitors on Neurotubules and Neurofilaments in Anterior Horn Cells. J. Cell. Biol. 38:224–229, 1968.PubMedCrossRefGoogle Scholar
  55. Wisniewski, H., Terry, R.D. and Hirano, A. Neurofibrillary Pathology. J. Neuropath. & Exper. Neurol. 39:163–176, 1970.CrossRefGoogle Scholar
  56. Wisniewski, H.M., Ghetti, B. and Terry, R.D. Neuritic (Senile) Plaques and Filamentous Changes in Aged Rhesus Monkeys. J. Neuropath. & Exper. Neurol. 32:566–584, 1973.CrossRefGoogle Scholar
  57. Wisniewski, H.M., Narang, H.K. and Terry, R.D. Neurofibrillary Tangles of Paired Helical Filaments. J. Neurol. Sci. 27:173–181, 1976.PubMedCrossRefGoogle Scholar
  58. Wisniewski, H.M., Narang, H.K., Corsellis, J.A.N. and Terry, R.D. Ultrastructural Studies of the Neuropil & Neurofibrillary Tangles in Alzheimer’s Disease & Post-Traumatic Dementia. J. Neuropath. & Exper. Neurol. 35:367, 1976.CrossRefGoogle Scholar
  59. Yen, S., Dahl, D., Schachner, M. and Shelanski, M.L. Biochemistry of the Filaments of Brain. Proc. Nat. Acad. Sci. USA, 73:529–533, 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Khalid Iqbal
    • 1
  • Henryk M. Wisniewski
    • 1
  • Inge Grundke-Iqbal
    • 1
  • Robert D. Terry
    • 1
  1. 1.Department of Pathology (Neuropathology Division)Albert Einstein College of MedicineBronxUSA

Personalised recommendations