Characterization of Discriminative Response Control by Psychomotor Stimulants

  • Peter B. Silverman
  • Beng T. Ho
Part of the Advances in Behavioral Biology book series (ABBI, volume 22)


Among the drugs which effectively control discriminative responding are the psychomotor stimulants. Despite differences in methodology utilized in different laboratories, the results available to date are quite consistent. Amphetamine, the prototype of this class of drugs, has been most extensively studied. For this reason, our discussion will center on amphetamine, other stimulants being mentioned where data are available.


Discriminative Stimulus None None Response Control Training Dose Lysergic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barry, H., III,: Classification of drugs according to their discriminate effects in rats. Fed. Proc. 33 : 1814–1824, 1974.PubMedGoogle Scholar
  2. 2.
    Barry, H., III, and Kubena, R. K.:Discriminative stimulus properties of alcohol, marihuana and atropine, In Drug Addiction: Experimental Pharmacology, ed. by J. M. Singh, L. H. Miller and H. Lal, pp. 3–16, Futura, New York, 1972.Google Scholar
  3. 3.
    Harris, R. T., and Balster, R. L.: An analysis of the function of drugs in the stimulus control of operant behavior. In Stimulus Properties of Drugs, ed. by T. Thompson and R. Pickens, pp. 111–132, Appleton-Century-Crofts, New York, 1971.Google Scholar
  4. 4.
    Do, B. T., and Huang, J.-T.: Role of dopamine in d-amphetamine-induced discriminative responding. Pharmacol. Biochem. Behav. 3: 1085–1092, 1975.CrossRefGoogle Scholar
  5. 5.
    Do, B. T., and McKenna, M. L.: Discriminative stimulus properties of central stimulants. In Drug Discrimination and State Dependent Learning, ed. by B. T. Ho, D. Chute and D. W. Richards, III, Academic Press, New York, in press.Google Scholar
  6. 6.
    Huang, J.-T.: Biochemical and pharmacological study of 2,5-dime-thoxy-4-methylamphetamine and analogs, Ph.D. dissertation, The University of Texas Graduate School of Biomedical Sciences, Houston, 1972.Google Scholar
  7. 7.
    Huang, J.-T. and Do, B. T.: The effect of pretreatment with ipron-iazid on the behavioral activities of β-phenylethylamine in rats. Psychopharmacologia 35: 77–81, 1974a.CrossRefGoogle Scholar
  8. 8.
    Huang, J.-T. and Do, B. T.: Effects of nikethamide, Picrotoxin and strychnine on ‘amphetamine state’ . Eur. J. Pharmacol. 29: 175–178, 1974b.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, J.-T. and Do, B. T.: Discriminative stimulus properties of d-amphetamine and related compounds in rats. Pharmacol. Biochem. Behav. 2: 669–673, 1974c.PubMedCrossRefGoogle Scholar
  10. 10.
    Innes, I. R. and Nickerson, M.: Norepinephrine, epinephrine, and the sympathomimetic amines. In The Pharmacological Basis of Therapeutics, ed. by L. S. Goodman and A. Gilman, pp. 477–513, The McMillan Company, New York, 1975.Google Scholar
  11. 11.
    Jones, C N., Grant, L. D. and Vospalek, D. M.: Temporal parameters of d-amphetamine as a discriminative stimulus in the rat. Psychopharmacologia 46: 59–64, 1976.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones, C N., Hill, H. F. and Harris, R. T.: Discriminative response control by d-amphetamine and related compounds in the rat. Psychopharmacologia 36: 347–356, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Kubena, R. K. and Barry, H., III: Generalization by rats of alcohol and atropine stimulus characteristics to other drugs. Psychopharmacologia 13: 196–206, 1969.Google Scholar
  14. 14.
    Kuhn, D. M., Appel, J. B. and Greenberg, I.: An analysis of some discriminative properties of d-amphetamine. Psychopharmacologia 39: 57–66, 1974.PubMedCrossRefGoogle Scholar
  15. 15.
    Morrison, C F. and Stephenson, J. A.: Nicotine injections as the conditioned stimulus in discrimination learning. Psychopharmacologia 15: 351–360, 1969.PubMedCrossRefGoogle Scholar
  16. 16.
    Overton, D. A.: State-dependent learning produced by depressant and atropine-like drugs. Psychopharmacologia 10: 6–31, 1966.PubMedCrossRefGoogle Scholar
  17. 17.
    Richards, D. W., III, Harris, R. T. and Do, B. T.: Central control of d-amphetamine-induced discriminative stimuli. Abstract presented at the Third Annual Meeting of the Society of Neurosciences, San Diego, California, Nov. 7–10, p. 340, 1973.Google Scholar
  18. 18.
    Rosecrans, J. A., Goodloe, M. H., Jr., Bennett, G. J. and Hirschhorn, I. D.: Morphine as a discriminative cue: effects of amine depletions and naloxone. Eur. J. Pharmacol. 21: 252–256, 1973.PubMedCrossRefGoogle Scholar
  19. 19.
    Schechter, M. D. and Cook, P. G.: Dopaminergic mediation of the interoceptive cue produced by d-amphetamine in rats. Psychopharmacologia 42: 185–193, 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Schechter, M. D. and Rosecrans, J. A.: Lysergic acid diethylamide (LSD) as a discriminative cue: drugs with similar stimulus pro- perties. Psychopharmacologia 26: 313–316, 1972.PubMedCrossRefGoogle Scholar
  21. 21.
    Schechter, M. D. and Rosecrans, J. A.: Nicotine as a discriminative cue in rats: inability of related drugs to produce a nicotine-like cueing effect. Psychopharmacologia 27: 379–387, 1972.PubMedCrossRefGoogle Scholar
  22. 22.
    Schechter, M. D. and Rosecrans, J. A.: d-Amphetamine as a dis- criminative cue: durgs with similar stimulus properties. Eur. J. Pharmacol. 21: 212–216, 1972.CrossRefGoogle Scholar
  23. 23.
    Scheel-Krüger, J.: Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of catecholamines in the brain. Eur. J. Pharmacol. 14: 47–59, 1971.PubMedCrossRefGoogle Scholar
  24. 24.
    Shulgin, A. T.: Stereospecific requirements for hallucinogenesis. J. Pharm. Pharmac. 25: 271–272, 1972.CrossRefGoogle Scholar
  25. 25.
    Silverman, P. B. and Do, B. T.: Manuscript in preparation, 1976.Google Scholar
  26. 26.
    Snyder, S. H., Faillace, L. and Hollister, L.: 2,5-Dimethoxy-4-methylamphetamine (STP): a new hallucinogenic drug. Science 158: 669–670, 1967.PubMedCrossRefGoogle Scholar
  27. 27.
    Snyder, S. H., Faillace, L. A. and Weingartner, H.:DOM (STP), a new hallucinogenic drug, and DOET: effects in normal subjects. Amer. J. Psychiat. 125: 357–364, 1968.Google Scholar
  28. 28.
    Tilson, H. A., Baker, T. G. and Gylys, J. A.: A comparison of the discriminative stimulus properties of R-2,5-dimethoxy-4-methylam-phetamine (R-DOM) and S-amphetamine in the rat. Psychopharmacologia 44: 225–228, 1975.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Rossum, J. M., Van Der Schoot, J. A. and Hurkmans, J.A.Th.M.: Mechanism of action of cocaine and amphetamine in the brain. Ex-perientia 18: 229–231, 1962.Google Scholar
  30. 30.
    Waters, W. H., Richards, D. W., III and Harris, R. T.: Discriminative control and generalization of the stimulus properties of D, L-amphetamine in the rat. In Drug Addiction: Experimental Pharmacology, Vol. 1, ed. by J. M. Singh, L. Miller, H. Lal, pp. 87–98, Futura, New York, 1972.Google Scholar
  31. 31.
    Winter, J. C: The effects of 2,5-dimethoxy-4-methylamphetamine (DOM), 2,5-dimethoxy-4-ethylamphetamine (DOET), d-amphetamine, and cocaine in rats trained with mescaline as a discriminative stimulus. Psychopharmacologia 44: 29–32, 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Weissman, A., Koe, B. K. and Tenen, S. S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharnacol. Exp. Ther. 151: 339–352, 1966.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Peter B. Silverman
    • 1
  • Beng T. Ho
    • 2
  1. 1.Texas Research Institute of Mental SciencesHoustonUSA
  2. 2.The University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations