Basic Considerations on the Role of Concertedly Working Dopaminergic, Gaba-Ergic, Cholinergic and Serotonergic Mechanisms within the Neo-Striatum and Nucleus Accumbens in Locomotor Activity, Stereotyped Gnawing, Turning and Dyskinetic Activities

  • A. R. Cools
Part of the Advances in Behavioral Biology book series (ABBI, volume 21)


In man there seems to exist an unmistakable correlation between central dopaminergic activity and psychomotor diseases such as Parkinson’s disease, Huntington’s chorea, tardive dyskinesias and some psychotic disorders (Barbeau, Doshey and Spiegel, 1965; Barbeau and McDowell, 1969; Barrett, Yahr, and Duvoisin, 1970; Calne, 1970; Crane, 1968a-b; Fog and Pakkenberg, 1970; Klawans, 1969, 1970, 1973; Klawans, Ilahi, and Shenker, 1970; La Plante and St. Laurent, 1973; Papeschi, 1972; Randrup and Munkvad, 1972; Stevens, 1973; Weil-Malherbe and Szara, 1971; Wyatt, Fermini, and Davis, 1971).


Locomotor Activity Nucleus Accumbens Caudate Nucleus Psychotic Disorder Raphe Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K. and Roth, R.H.: y-hydroxybutyrate-induced increase in brain dopamine: Localization by fluorescence microscopy,J. Pharmac. exp. Ther. 175, 131–138 (1970).Google Scholar
  2. Aghajanian, G.K., Rosecrans, J., and Sheard, M.: Serotonin: Release in the forebrain by stimulation of midbrain raphé, Science 156, 402–403 (1967).PubMedCrossRefGoogle Scholar
  3. Andèn, N.E. and Jackson, D.N.: Locomotor activity stimulation in rats produced by dopamine in the nucleus accumbens: Potentiation by caffeine, J. Pharm. Pharmac. 27, 666–670 (1975).Google Scholar
  4. Andèn, N.E., Dahlström, A., Fuxe, K., Olson, L., and Ungerstedt, U.: Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67, 313–326 (1966).CrossRefGoogle Scholar
  5. Arnfred, T. and Randrup, A.: Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behaviour, Acta Pharmac. Tox. 26, 384 – 394 (1968).CrossRefGoogle Scholar
  6. Aprison, M.H. and Hintgen, J.N.: Serotonin and behavior: A brief summary, Fed. Proc. 31, 121–129 (1972).PubMedGoogle Scholar
  7. Ashkenazi, R., Holman, R.B., and Vogt, M.: Release of transmitter on stimulation of the nucleus linearis raphe in the cat, J. Physiol. 223, 255–259 (1972).PubMedGoogle Scholar
  8. Baker, W.W., Connor, J.D., Rossi, G.V., and Lalley, P.M.: Production of tremor by intracaudate cholinergic agents and its suppression by locally administered catecholamines. In: Progress in Neuro-Genetics. Barbeau, A. and Brunette, J.A., Eds., Vol. 1, pp. 390–403, International Congress Series No. 175. Amsterdam: Excerpta Medica, 1969.Google Scholar
  9. Baldessarini, R.J., Amatruda, T.T., Griffith, F.F., and Gerson, S.:Differential effects of serotonin on turning and stereotypy induced by apomorphine, Brain Res. 93, 158–163 (1975).PubMedCrossRefGoogle Scholar
  10. Barbeau, A.: Biology of the striatum. In: Biology of Brain Dysfunction. Gaull, G.E., Ed., Vol. 2, pp. 333–350. New York: Plenum Press, 1973.CrossRefGoogle Scholar
  11. Barbeau, A., Doshey, L.J., and Spiegel, E.A., (Eds.): Parkinson’s Disease: Trends in Research and Treatment. New York: Gunne and Stratton, 1965.Google Scholar
  12. Barbeau, A. and McDowell, F.H.: L-DOPA and Parkinsonism. Philadelphia: F.A. Davis Company, 1969.Google Scholar
  13. Barret, R.E., Yahr, M.D., and Duvoisin, R.C.: Torsion dystonia and spasmodic torticollis: Results of treatment with L-DOPA, Neurology, Minneap. 20, No. 11 (2), 107–113 (1970).Google Scholar
  14. Bartholini, G., Keller, H.H., and Pletscher, A.: Drug-induced changes of dopamine turnover in striatum and limbic system of the rat, J. Pharm. Pharmac. 27, 439–442 (1975).Google Scholar
  15. Berry, M.S. and Cottrell, G.A.: Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine containing neuron, J. Physiol. 244, 589–612 (1975).Google Scholar
  16. Birkmayer, W. and Neumayer, E.: Die Behandlung der DOPA-psychosen mit L-tryptophan, Nervenarzt 43, 76–78 (1972).PubMedGoogle Scholar
  17. Bobillier, P. Petitjean, F., Salvert, D., Ligier, M., and Sequin, S.: Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography, Brain Res. 85, 205–210 (1975).PubMedCrossRefGoogle Scholar
  18. Bondareff, W., Routtenberg, A., Narotzky, R., and McLone, D.G.: Intra-striatal spreading of biogenic amines, Expl Neurol. 28, 213–329 (1970).CrossRefGoogle Scholar
  19. Breese, G.R., Cooper, B.R., and Mueller, R.A.: Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine, Br. J. Pharmacol. 52, 307–314 (1974).Google Scholar
  20. Broch, O.J. and Marsden, C.A.: Regional distribution of monoamines in the corpus striatum of the rat, Brain Res. 38, 425–428 (1972).PubMedCrossRefGoogle Scholar
  21. Brodal, A.E., Faber, E., and Walberg, F.: The raphe nuclei of the brain stem in the cat: Efferent connections, J. comp. Neurol. 114, 239–259 (1969).CrossRefGoogle Scholar
  22. Butcher, S.G. and Butcher, L. Choline activity in the L.: Origin and modulation of acetylneostriatum, Brain Res. 71, 167 (1974)PubMedCrossRefGoogle Scholar
  23. Butcher, L.L. and Bryan, G.K.: Effects of intrastriatal dopamine application on precise motor response. In: Proceedings of the Fifth International Congress of Pharmacology, San Francisco, 1972.Google Scholar
  24. Butcher, S.G. and Butcher, L. choline activity in the L.: Origin and modulation of acetylneostriatum, Brain Res. 71, 167 (1974)PubMedCrossRefGoogle Scholar
  25. Calne, D.E.: Parkinsonism: Physiology, Pharmacology and Treatment. London: Edward Arnold, 1970.Google Scholar
  26. Connor, J.D., Rossi, G.V., and Baker, W.W.: Antagonism of intracau- date carbachol tremor by local injections of catecholamines,J. Pharmac. exp. Ther. 155, 545–551 (1967).Google Scholar
  27. Cools, A.R.: The function of dopamine and its antagonism in the caudate nucleus of cats in relation to the stereotyped behaviour, Archs in Pharmacodyn. Thér. 194, 259–269 (1971).Google Scholar
  28. Cools, A.R.: Athetoid and choreiform hyperkinesias produced by caudate application of dopamine in cats, Psychopharmacologia 25, 229–237 (1972).PubMedCrossRefGoogle Scholar
  29. Cools, A.R.: The Caudate Nucleus and Neurochemical Control of Behaviour. Nijmegen: Brakkenstein Press, 1973a.Google Scholar
  30. Cools, A.R.: Serotonin: A behaviourally active compound in the caudate nucleus of cats, Israel J. Med. Sci. 9, suppl., 5–16 (1973b).Google Scholar
  31. Cools, A.R.: The transsynaptic relationship between dopamine and serotonin in the caudate nucleus of cats, Psychopharmacologia 36, 17–28 (1974).PubMedCrossRefGoogle Scholar
  32. Cools, A.R.: An integrated theory of the aetiology of schizophrenia: Impairment of the balance between certain, in series, connected dopaminergic, serotonergic and noradrenergic pathways within the brain. In: On the Origin of Schizophrenic Psychoses. van Praag, H.M., Ed., pp. 53–80. Amsterdam: De Erven Bohn, 1975.Google Scholar
  33. Cools, A.R.: Two topographically, functionally and pharmacologically distinct dopamine receptors in rat and cat brain. In:Symposium on Non-striatal Dopaminergic Neurons Gessa, G.L. and Costa, E., Eds., in press.Google Scholar
  34. Cools, A.R.: Relation of dopaminergic, neostriatal and serotonergic, linear nuclei to behaviour in cats. In: Neurohumoral Correlates of Behaviour Faridaban: Thomson Press, in press.Google Scholar
  35. Cools, A.R. and van Rossum, J.M.: Caudate dopamine and stereotyped behaviour of cats, Archs in Pharmacodyn. Thér. 197, 163–173 (1970).Google Scholar
  36. Cools, A.R. and Janssen, H.J.: The nucleus linearis intermedius raphe and behaviour evoked by direct and indirect stimulation of dopamine-sensitive sites within the caudate nucleus of cats, Eur. J. Pharmacol. 28, 266–275 (1974).PubMedCrossRefGoogle Scholar
  37. Cools, A.R., Janssen, H.J., and Broekkamp, C.L.E.: The differential role of the caudate nucleus and the linear raphe nucleus in the interaction and maintenance of morphine-induced behaviour in cats, Archs in Pharmacodyn. Thér. 210, 163–174 (1974).Google Scholar
  38. Cools, A.R., Janssen, H.J., Struyker Boudier, H.A.J., and van Rossum, J.M.: Interaction between antipsychotic drugs and catecholamine receptors. In: Wenner-Gren Series, Vol. 5, pp. 73–87. Oxford: Pergamon Press, 1975a.Google Scholar
  39. Cools, A.R., Hendriks, G., and Korten, J.: The acetylcholine- dopamine balance in the basal ganglia of rhesus monkeys and its role in dynamic, dystonic, dyskinetic and epileptoid motor activities, J. Neural Transm. 36, 91–105 (1975b).CrossRefGoogle Scholar
  40. Cools, A.R. and Janssen, J.H.: y-aminobutyric acid: The essential mediator of behaviour triggered by neostriatally applied apomorphine and haloperidol, J. Pharm. Pharmac. 28, 70–74 (1976).Google Scholar
  41. Cools, A.R. and van Rossum, J.M.: Excitation-mediating and inhibition-mediating dopamine-receptors: A new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data, Psychopharmacologia 45, 243–254 (1976).PubMedCrossRefGoogle Scholar
  42. Cools, A.R., Struyker Boukier, J.A.J., and van Rossum, J.M.: Dopamine-receptors: Selective agonists and antagonists of functionally distinct types within the feline brain, Eur. J. Pharmacol in press.Google Scholar
  43. Costall, B. and Naylor, R.J.: Modification of amphetamine effects by intracerebrally administered anticholinergic agents, Life Sci. 11 (1), 239–253 (1972).CrossRefGoogle Scholar
  44. Costall, B., Naylor, R.J., and 011ey, J.E.: Catalepsy and circling behaviour after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate putamen, globus pallidus and substantia nigra of rat brain, Neuropharmacol. 11, 645–663 (1972).CrossRefGoogle Scholar
  45. Costall, B. and Naylor, R.J.: The role of telencephalic dopaminergic systems in the mediation of apomorphine-stereotyped behaviour, Eur. J. Pharmacol. 24, 8–24 (1973).PubMedCrossRefGoogle Scholar
  46. Costall, B. and Naylor, R.J.: Specific asymmetric behaviour induced by the direct chemical stimulation of neostriatal dopaminergic mechanisms, Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 285, 83–98 (1974a).CrossRefGoogle Scholar
  47. Costall, B. and Naylor, R.J.: Stereotyped and circling behaviour induced by dopaminergic agonists after lesions of the midbrain raphe lesions, Eur. J. Pharmacol. 29, 206–222 (1974b).PubMedCrossRefGoogle Scholar
  48. Costall, B. and Naylor, R.J.: A comparison of circling models for the detection of antiparkinson activity, Psychopharmacologia 41, 57–64 (1975a).PubMedCrossRefGoogle Scholar
  49. Costall, B. and Naylor, R.J.: Neuroleptic antagonism of dyskinetic phenomena, Eur. J. Pharmacol. 33, 301–312 (1975b).PubMedCrossRefGoogle Scholar
  50. Costall, B., Naylor, R.J., and Pinder, R.M.: Dyskinetic phenomena caused by the intrastriatal injection of phenylethylamine, phenylpiperazine, tetrahydroisoquinoline and tetrahydronaphthalene derivatives in the guinea. pig, Eur. J. Pharmacol. 31, 94–109 (1975a).CrossRefGoogle Scholar
  51. Costall, B., Naylor, R.J., and Neumeyer, J.L.: Differences in the nature of the stereotyped behaviour induced by aporphine derivatives in the rat and in their actions in extrapyramidal and mesolimbic brain areas, Eur. J. Pharmacol. 31, 1–16 (1975b).PubMedCrossRefGoogle Scholar
  52. Costall, B., Naylor, R.J., and Pinder, R.M.: Design of agents for stimulation of neostriatal dopaminergic mechanisms, J. Pharm. Pharmac. 26, 753–756 (1975c).CrossRefGoogle Scholar
  53. Costall, B., Naylor, R.J., and Pycock, C.: Non-specific supersensitivity of striatal dopamine receptors after 6-hydroxydopamine lesion of the nigrostriatal pathway, Eur. J. Pharmacol. 35, 275–283 (1976).CrossRefGoogle Scholar
  54. Costentin, J., Protais, P., and Schwarz, J.C.: Rapid and dissociated changes in sensitivity of different dopamine receptors in the mouse brain, Nature 257, 405–407 (1975).PubMedCrossRefGoogle Scholar
  55. Crane, G.E.: Dyskinesia and neuroleptics, Archs gen. Psychiat. 19, 700–703 (1968a).CrossRefGoogle Scholar
  56. Crane, G.E.: Tardive dyskinesia in patients treated with major neuroleptics: A review of the literature, Am. J. Psychiat. 124, suppl. 40–48 (1968b).Google Scholar
  57. Dahlström, A. and Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system, Acta Physiol. Scand. 62, Suppl. 232, 1–55 (1964).Google Scholar
  58. Delorme, F., Froment, Z.L., and Jouvet, M.: Suppression du sommeil par lap-chloromethamphetamine et la p-chlorophenylalanine, Cr. Séanc. Soc. Biol. 180, 23–47 (1966).Google Scholar
  59. Dill, R.E., Nickey, W.M., and Little, M.D.: Dyskinesias in rats following chemical stimulation of the neostriatum, Tex. Rep. Biol. Med. 20, 101–106 (1968).Google Scholar
  60. Divac, I.: Drug induced syndromes in rats with large, chronic lesions in the corpus striatum, Psychopharmacologia 27, 171–178 (1972).PubMedCrossRefGoogle Scholar
  61. Duvoisin, R.D.: Cholinergic-anticholinergic antagonism in parkin-sonism, Archs Neurol., Chicago 17, 124–136 (1967).CrossRefGoogle Scholar
  62. Elkhawad, A. and Woodruff, G.N.: Studies on the behavioural pharmacology of a cyclic analogue of dopamine following its injection into the brains of conscious rats, Br. J. Pharmacol. 43, 107–114 (1975).Google Scholar
  63. Ernst, A.M. and Smelik. P.G.: Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats, Experientia 22, 837–838 (1966).PubMedCrossRefGoogle Scholar
  64. Fahn, S. and Côté, L.J.: Regional distribution of y-aminobutyric acid (GABA) in the brain of the rhesus monkey, J. Neurochem. 15, 209–213 (1968).PubMedCrossRefGoogle Scholar
  65. Feldberg, W.: Present views on the mode of action of acetylcholine in the central nervous system, Physiol. Rev. 25, 596–642 (1945).PubMedGoogle Scholar
  66. Feltz, P.: Problems raised by the electrophysiological determination of nigro-striatal inhibitions related to a dopaminergic transmission, J. Pharmacol 5, suppl. 1, 57 (1974).Google Scholar
  67. Fibiger, H.C., Pudritz, R.E., McGeer, P.L., and McGeer, E.G.: Axonal transport in nigro-striatal neurones, Nature new Biol. 237, 177–179 (1972).PubMedCrossRefGoogle Scholar
  68. Fog, R. and Pakkenberg, H.: Combined nitoman-pimozide treatment of huntington’s chorea and other hyperkinetic syndromes, Acta Neurol. Scand. 46, 249–251 (1970).CrossRefGoogle Scholar
  69. Frederiksen, P.K.: Baclophen in the treatment of schizophrenia NIH-76–145c, Lakartidningen 72 (6), 456 (1975).Google Scholar
  70. Fuxe, K., Hökfelt, T., and Nilsson, O.: Observations on the cellular localization of dopamine in the caudate nucleus of the rat, Histochemie 63, 701–706 (1964).Google Scholar
  71. Fuxe, K., Hökfelt, T., and Ungerstedt, U.: Distribution of monoamines in the mammalian central nervous system by histochemical studies. In: Metabolism of Amines in the Brain. Hooper, C., Ed., p. 10. London: MacMillan, 1969.Google Scholar
  72. Grabowska, M.: Influence of midbrain raphe lesion on some pharmacological and biochemical effects of apomorphine in rats, Psychopharmacologia 39, 315–322 (1974).PubMedCrossRefGoogle Scholar
  73. Green, T.K. and Harvey, J.A.: Enhancement of amphetamine action after interruption of ascending serotonergic pathways, J. Pharmac. exp. Ther. 190, 109–117 (1974).Google Scholar
  74. Gumpert, J., Sharpe, D., and Curzon, G.: Amine metabolites in the cerebral-spinal fluid in Parkinson’s disease and the response to levodopa, J. Neurol. Sci. 19, 1–12 (1973).PubMedCrossRefGoogle Scholar
  75. Hadzovic, S. and Ernst, A.M.: The effect of 5-hydroxytryptamine and 5-hydroxytryptophan on extra-pyramidal function, Eur. J. Pharmacol. 6, 90–95 (1969).PubMedCrossRefGoogle Scholar
  76. Harvey, J.A., Heller, A., and Moore, R.Y.: The effect of unilateral and bilateral medial forebrain bundle lesions on brain serotonin, J. Pharmac. exp. Ther. 140, 103–110 (1963).Google Scholar
  77. Hebb, C.: Biosynthesis of acetylcholine in nervous tissue, Pharmac. Rev. 52, 918–948 (1972).Google Scholar
  78. Hökfelt, T. and Ungerstedt, U.: Electron and fluorescence microscopial studies on the N. caudato-putaminal complex of the rat after unilateral lesions of ascending nigro-neostriatal dopaminergic neurons, Acta Physiol. Scand. 76, 415–426 (1969).CrossRefGoogle Scholar
  79. Holman, R.B. and Vogt, M.: Release of 5-hydroxytryptamine from the caudate nucleus and septum, J. Physiol. 223, 243–254 (1972).PubMedGoogle Scholar
  80. Horn, A.S., Cuello, A.C., and Miller, R.J.: Dopamine in the meso limbic system of the rat brain: Endogeneous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem. 22, 265–270 (1974).PubMedCrossRefGoogle Scholar
  81. Hull, C.D., Buchwald, M.A., and Ling, G.: Effects of direct cholinergic stimulation of forebrain structures, Brain Res. 6, 22–35 (1967).PubMedCrossRefGoogle Scholar
  82. Ibata, Y., Nojyo, Y., Matsuura, T., and Sano, Y.: Nigro-neostriatal projection. A correlative study with Fink-Heimer impregnation, fluorescence histochemistry and electron microscopy, Z. Zell-forsch. mikrosk. Anat. 138, 333–344 (1973).CrossRefGoogle Scholar
  83. Iversen, L.L.: Summing up, Adv. Neurol. 9, 415 (1974).Google Scholar
  84. Jacobowitz, D.M.: Effects of 6-hydroxydopa. In: Frontiers in Catecholamine Research. Usdin, E. and Snyder, S., Eds., p. 729. Oxford: Pergamon Press, 1973.Google Scholar
  85. Jackson, D.N.: Some functional effects produced by the direct application of sympathomimetic amines to various parts of the brain and their alteration by antipsychotic agents. In: Proceedings, International Symposium on Antipsychotic Drugs, Pharmacodynamics and Pharmacokinetics In press.Google Scholar
  86. Jéquier, E. and Dufresne, J.J.: Biochemical investigations in patients with parkinson’s disease treated with L-DOPA, Neurology, Minneap. 22, 15–21 (1972).PubMedCrossRefGoogle Scholar
  87. Jouvet, M.: Biogenic amines and the states of sleep, Science 163, 32–41 (1969).PubMedCrossRefGoogle Scholar
  88. Kelly, P.H.: Unilateral 6-hydroxydopamine lesions of nigrostriatal or mesolimbic dopamine-containing terminals and the drug- induced rotation of rats, Brain Res. 100, 163–169 (1975).PubMedCrossRefGoogle Scholar
  89. Kelly, P.H. and Miller, R.: The interaction of neuroleptic and muscarinic agents with central dopaminergic systems, Br. J. Pharmacol. 54, 115–121 (1974).Google Scholar
  90. Kelly, P.H., Seviour, P.W., and Iversen, S.D.: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res. 74, 507–522 (1975).CrossRefGoogle Scholar
  91. Kim, J.S., Bak, I.J., Hassler, R., and Okada, Y.: Role of y-aminobutyric acid (GABA) in the extrapyramidal motor system: Some evidence for the existence of a type of GABA-rich strio-nigral neurons, Exp. Brain Res. 14, 95–104 (1971).Google Scholar
  92. Klawans, H.L.: The pharmacology of parkinsonism, Dis. nerv. Syst. 29, 805–816 (1969).Google Scholar
  93. Klawans, H.L.: A pharmacological analysis of huntington’s chorea, Eur. Neurol. 4, 148–163 (1970).PubMedCrossRefGoogle Scholar
  94. Klawans, H.L.: Some observations on the pharmacology of the striatum, Psychiatric Forum, 16–26 (1973).Google Scholar
  95. Klawans, H.L., Ilahi, M.M., and Shenker, D.: Theoretical implications of the use of L-DOPA in parkinsonism: A review, Acta Neurol. Scand. 46, 409–441 (1970).Google Scholar
  96. Koob, G.F., Balcom, G.J., and Meyerhoff, J.L.: Changes in dopamine and norepinephrine in the nucleus accumbens septi, olfactory tubercle and corpus striatum following lesions in ventral tegmental area in the rat, Fed. Proc. 33, 246 (1974).Google Scholar
  97. Korczyn, A.D.: Pathophysiology of drug-induced dyskinesias, Neuropharmacol. 11, 601–607 (1972).CrossRefGoogle Scholar
  98. Kuhar, M.J., Roth, R.H., and Aghajanian, G.K.: Selective reduction of tryptophan hydroxylase activity in rat forebrain after mid-brain raphe lesions, Brain Res. 35, 167–176 (1971).PubMedCrossRefGoogle Scholar
  99. Langlois, J.M. and Poussart, J.: Electrocortical activity following cholinergic stimulation of the caudate nucleus in the cat, Brain Res. 15, 581–583 (1969).PubMedCrossRefGoogle Scholar
  100. La Plante, M. and St. Laurent, J.: La recherche des bases bio- chimiques des syndromes schizophréniques: Une revue,Un. méd. Can. 102, 2267–2278 (1973).Google Scholar
  101. Lints, C.E. and Harvey, J.A.: Altered sensitivity to footshock and decreased brain content of serotonin following brain lesions in the rat, J. comp. physiol. Psychol. 57, 23–31 (1969).CrossRefGoogle Scholar
  102. Lorens, S.A. and Guldberg, H.C.: Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat, Brain Res. 78, 45–56 (1974).PubMedCrossRefGoogle Scholar
  103. Lynch, G.S., Lucas, P.A., and Deadwyler, S.A.: Demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat, Brain Res. 45, 617–621 (1972).PubMedCrossRefGoogle Scholar
  104. Maj, J. and Pawlowski, L.: The effect of L-DOPA on exploratory activity after catecholamine receptors blocking agents, Pol. J. Pharmacol. Pharmac. 26, 633–638 (1974).Google Scholar
  105. Maler, L., Fibiger, H.C., and McGeer, P.L.: Demonstration of the nigro-striatal projection by silver staining after nigral injection of 6-hydroxydopamine, Expl Neurol. 40, 505–515 (1973).CrossRefGoogle Scholar
  106. Malseed, R.T. and Baker, W.W.: Analysis of tremorgenic effects of intracaudate serotonin, Proc. Soc. exp. Biol. Med. 143, 1088–1093 (1973).Google Scholar
  107. Marby, P.D. and Campbell, B.A.: Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49, 381–391 (1973).CrossRefGoogle Scholar
  108. McGeer, P., McGeer, E., Fibiger, H., and Wickson, V.: Neostriatal choline acetylase and cholinesterase following brain lesions, Brain Res. 35, 308–314 (1971a).PubMedCrossRefGoogle Scholar
  109. McGeer, P.L., McGeer, E.L., Wada, J.A., and Jung, E.: Effects of globus pallidus lesions and parkinson’s disease on brain glutamate acid decarboxylase, Brain Res. 32, 425–431 (1971b).PubMedCrossRefGoogle Scholar
  110. McKenzie, G.M.: Role of the tuberculum olfactorium in stereotyped behaviour induced by apomorphine in the rat, Psychopharmacologia 23, 212–219 (1972).PubMedCrossRefGoogle Scholar
  111. McKenzie, G.M.: Apomorphine-induced aggression: Characteristics, pharmacological interaction, and site of action, Psychopharmac. Serv. Cent. Bull. 9 (3), 19–21 (1973).Google Scholar
  112. McKenzie, G.M. and Viik, K.: Chemically induced choreiform movements in the rat: Blocked by GABA and neuroleptics. Abstracts of Volunteer Papers, p. 154, from the Fifth International Congress on Pharmacology, San Francisco, 1972.Google Scholar
  113. McKenzie, G.M. and Viik, K.: Chemically induced choreiform activity: Antagonism by GABA and EEG patterns, Expl Neurol. 46, 229–243 (1975).CrossRefGoogle Scholar
  114. McLennan, H.: The release of acetylcholine and of 3-hydroxytyramine from the caudate nucleus, J. Physiol. 174, 152–161 (1964).Google Scholar
  115. Milhaud, C.L. and Klein, M.J.: Inhibition emotionelle de la stereotypie amphetaminique du chat, J. Pharmacol. 5, suppl. 2, 67 (1974).Google Scholar
  116. Miller, R.J., Horn, A.S., and Iversen, L.L.: The action of neuroleptic drugs on dopamine stimulated adenosine-3’, 5’-monophosphate production in rat neostriatum and limbic forebrain,Mol. Pharmacol. 10, 759–766 (1974).Google Scholar
  117. Miller, J.J., Richardson, T.L., Fibiger, H.C., and McLennan, H.: Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat, Brain Res. 97, 133–138 (1975).PubMedCrossRefGoogle Scholar
  118. Moore, R.Y., Bhatanagar, R.K., and Heller, A.: Anatomical and chemical studies of a nigro-neostriatal projection in the rat, Brain Res. 30, 119–135 (1971).PubMedCrossRefGoogle Scholar
  119. Nauta, H.J.W., Pritz, M.B., and Lasch, R.J.: Afferents to the rat caudato-putamen studied with horse radish peroxidase. An evaluation of a retrograde neuroanatomical research method, Brain Res 67, 219–238 (1974).Google Scholar
  120. Neill, D.B., Grant, L.D., and Grosman, S.P.: Selective potentiation of locomotor effects of amphetamine by midbrain raphe lesions, Physiol. $ Behay. 9, 655 (1972).Google Scholar
  121. Ng, K.Y., Chase, T.N., Colburn, R.W., and Kopin, I.J.: L-DOPA induced release of cerebral monoamines, Science 170, 76–77 (1970).PubMedCrossRefGoogle Scholar
  122. Olivier, A., Parent, R., Simard, H., and Poirier, L.J.: Cholinesterasic striatopallidal and striatonigral efferents in the cat and the monkey, Brain Res. 18, 273–282 (1970).PubMedCrossRefGoogle Scholar
  123. Olson, L., Seiger, A., and Fuxe, K.: Heterogeneity of striatal and limbic dopamine innervation: Highly fluorescent islands in the developing and adult rats, Brain Res. 44, 283–288 (1972).PubMedCrossRefGoogle Scholar
  124. Papeschi, R.: Dopamine, extrapyramidal system and psychomotor function, Psychiat. Neurol. Neurchir. 75, 13–48 (1972).Google Scholar
  125. Parent, A. and Poirier, L.J.: The medial forebrain bundle (MFB) and ascending monoaminergic pathways in the cat, Can. J. Physiol. Pharmacol. 47, 781–785 (1969).Google Scholar
  126. Parizek, J., Hassler, R., and Bak, I.J.: Light and electron microscopic autoradiography of substantia nigra of rat after intra-ventricular administration of tritium labelled norepinephrine, dopamine, serotonin and the precursors, Z. Zellforsch. mikrosk. Anat. 115, 137–148 (1971).CrossRefGoogle Scholar
  127. Pijnenburg, A.J.J. and van Rossum, J.M.: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens, J. Pharm. Pharmac. 25, 1003–1005 (1973).CrossRefGoogle Scholar
  128. Pijnenburg, A.J.J., Woodruff, G.N., and van Rossum, J.M.: Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens, Brain Res. 59, 289–302 (1973).PubMedCrossRefGoogle Scholar
  129. Pijnenburg, A.J.J., Honig, W.M.M., and van Rossum, J.M.: Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat, Psychopharmacologia 41, 87–95 (1975a).PubMedCrossRefGoogle Scholar
  130. Pijnenburg, A.J.J., Honig, W.M.M., and van Rossum, J.M.: Antagonism of apomorphine-and d-amphetamine-induced stereotyped behaviour by injection of low doses of haloperidol into the caudate nucleus and the nucleus accumbens, Psychopharmacologia 45, 65–71 (1975b).CrossRefGoogle Scholar
  131. Pijnenburg, A.J.J., Honig, W.M.M., and van Rossum, J.M.: Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats, Psychopharmacologia 41, 175–180 (1975c).PubMedCrossRefGoogle Scholar
  132. Pijnenburg, A.J.J., Honig, W.M.M., van der Heyden, J.A.M., and van Rossum, J.M.: Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity, E ur. J. Pharmacol. 35, 45–58 (1976).Google Scholar
  133. Pijnenburg, A.J.J., Honig, W.M.M., Struyker Boudier, H.A.J., Cools,A.R., van der Heyden, J.A.M., and van Rossum, J.M.: Further investigation on the effects of ergometrine and other ergot derivatives following injection into the nucleus accumbens of the rat, Archs in Pharmacodyn. Thér in press.Google Scholar
  134. Poirier, L., Langlier, P., Bédard, P., Boucher, R., LaRochelle, L., Parent, A., and Roberge, A.: Dopaminergic and cholinergic mechanisms in relation to postural tremor in the cat, Adv. Neurol. 5, 5–10 (1974).Google Scholar
  135. Randrup, A. and Munkvad, I.: On the relation of tryptaminic and serotonergic mechanisms to amphetamine induced abnormal behaviour, Acta Pharmac. Tox. 21, 272–282 (1964).CrossRefGoogle Scholar
  136. Randrup, A. and Munkvad, I.: Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain, Orthomolec. Psychiat. 1, 2–15 (1972).PubMedGoogle Scholar
  137. Roberts, E.: An hypothesis suggesting that there is a defect in the GABA system in schizophrenia, Neurosci. Res. Progr. Bull. 10, 468 (1972).Google Scholar
  138. Roberts, E.: Disinhibition as an organizing principle in the nervous system. The role of gamma-aminobutyric acid, Adv. Neurol 5, 127–143 (1974).Google Scholar
  139. Robinson, N. and Wells, F.: Distribution and localization of sites of gamma-aminobutyric acid metabolism in the adult rat brain, J. Anat. 114, 365–378 (1973).PubMedGoogle Scholar
  140. Rotrosen, J., Angrist, B.M., Wallach, M.B., and Gershon, S.: Absence of serotonergic influence on apomorphine stereotypy, Eur. J. Pharmacol. 20, 133–135 (1972).PubMedCrossRefGoogle Scholar
  141. Scheel-Krüger, J.: Central effects of anticholinergic drugs measured by the apomorphine gnawing test in mice, Acta Pharmac. Tox. 28, 1–16 (1970).CrossRefGoogle Scholar
  142. Seiger, A. and Olson, L.: Late prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations, Z. Anat. EntwGesch. 140, 281–318 (1973).CrossRefGoogle Scholar
  143. Shellenberger, M.K. and Gordon, J.H.: Regional differences in responses to displacement and inhibition of synthesis of catecholamines in the cat brain, Biol. Psychiat. 9(2), 131–145 (1974).PubMedGoogle Scholar
  144. Shute, C. and Lewis, P.: The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90, 497–520 (1967).PubMedCrossRefGoogle Scholar
  145. Stevens, J., Wilson, K., and Foote, W.: GABA blockade, dopamine and schizophrenia: Experimental studies in the cat, Psychopharmacologia 39, 105–119 (1974).PubMedCrossRefGoogle Scholar
  146. Stevens, J.R.: An anatomy of schizophrenia, Archs gen. Psychiat. 29, 177–189 (1973).CrossRefGoogle Scholar
  147. Struyker Boudier, H.A.J.: Catecholamine Receptors in Nervous Tissue. Pp. 1–85.1975.Google Scholar
  148. Nijmegen, H.A.J.: Catecholamine Receptors in Nervous Tissue. Pp. 1–85. Nijmegen: “Stichting Studentenpers” Press, 1975.Google Scholar
  149. Struyker Boudier, H.A.J., Gielen, W., Cools, A.R., and van Rossum, J.M.: Pharmacological analysis of dopamine-induced inhibition and excitation of neurones of the snail Helix aspersa, Archs int. Pharmacodyn. Thér. 209, 324–332 (1974).Google Scholar
  150. Struyker Boudier, H.A.J., Teppema, L., Cools, A.R., and van Rossum, J.M.: (3, 4-dihydroxyphenylamino)-2-imidazoline (DPI): A new, potent stimulant at dopamine receptors mediating neuronal inhibition, J. Pharm. Pharmac. 27, 882–883 (1975).CrossRefGoogle Scholar
  151. Sutin, J. and McNair, J.: Suppression of cell firing in the substantia nigra by caudate stimulation, Physiologist, Wash. 14, 241 (1971).Google Scholar
  152. Tenen, S.S.: The effects of p-chlorophenylalanine, a serotonin depleter on avoidance acquisition, pain sensitivity and related behavior in the rat, Psychopharmacologia 10, 204–219 (1967).PubMedCrossRefGoogle Scholar
  153. Tennyson, V.M., Barrett, R.E., Cohen, G., Côté, L., Heikkila, R., and Mytilineou, C.: The developing neostriatum of the rabbit:Correlation of fluorescence histochemistry, electron microscopy, endogeneous dopamine levels, and (H3) dopamine uptake, Brain Res. 46, 251–285 (1972).PubMedCrossRefGoogle Scholar
  154. Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand., Suppl. 367, 1–48 (1971a).Google Scholar
  155. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine systems, Acta Physiol. Scand., Suppl. 367, 69–93 (1971b).Google Scholar
  156. Ungerstedt, U.: Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., Suppl. 367, 95–122 (1971c).Google Scholar
  157. Ungerstedt, U., Butcher, L.L., Butcher, S.S., Andén, N.E., and. Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of rats, Brain Res. 14, 461–471 (1969).PubMedCrossRefGoogle Scholar
  158. Weil-Malherbe, H. and Szara, S.I.: The Biochemistry of Functional and Experimental Psychoses (American Lecture Series Publication No. 817 ). Springfield, Ill: Charles C. Thomas, 1971.Google Scholar
  159. Wolfarth, S., Grabowska, M., Lacki, M., Dulska, E., and Antkiewicz, L.: The action of apomorphine in rats with striatal lesions, Activitas nerv. sup. 15, 132–138 (1973).Google Scholar
  160. Wyatt, R.J., Fermini, B.A., and Davis, J.: Biochemical and sleep studies on schizophrenia: A review of the literature 19601970, Schizophrenia 4, 10–44 (1971).Google Scholar
  161. Wyatt, R.J., Vaughan, T., Galanter, M., Kaplan, J., and Green, R.: Behavioural changes of schizophrenic patients given L-5-hydroxytryptophan, Science 177, 1124–1126 (1972).PubMedCrossRefGoogle Scholar
  162. York, D.H.: Possible dopaminergic pathways from substantia nigra to putamen, Brain Res. 20, 223–249 (1970).CrossRefGoogle Scholar
  163. Yoshida, M. and Precht, O.W.: Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibres, Brain Res. 32, 225–228 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. R. Cools
    • 1
  1. 1.Department of PharmacologyNijmegenThe Netherlands

Personalised recommendations