Cocaine: Discussion on the Role of Dopamine in the Biochemical Mechanism of Action

  • Jorgen Scheel-Krüger
  • Claus Braestrup
  • Mogens Nielson
  • Krystyna Golembiowska
  • Ewa Mogilnicka
Part of the Advances in Behavioral Biology book series (ABBI, volume 21)


The central stimulant effect of cocaine is generally considered related to its potentiating effect on biogenic amines. However, the individual role and significance of the amines involved in various stimulant effects of cocaine are still a controversial topic. Cocaine is a potent inhibitor of noradrenaline uptake (Hertting, Axelrod, and Whitby, 1961; Ross and Renyi, 1967; Langer and Enero, 1974; Azzaro, Ziance, and Rutledge, 1974), dopamine uptake (Fuxe, Hamberger, and Malmfors, 1967; Ross and Renyi, 1967; Harris and Baldessarini, 1973; Heikkila, Orlansky, Mytilineou, and Cohen, 1975), and serotonin uptake (Ross and Renyi, 1969; Friedman, Gershon, and Rotrosen, 1975). High affinity uptake of tryptophan into synaptosomes is also inhibited (Knapp and Mandell, 1972). In vivo studies have shown that cocaine induces a short-lasting uptake inhibition into brain tissues of noradrenaline (Schanberg and Cook, 1972), dopamine (Fuxe, Ham-berger, and Malmfors, 1967), and serotonin (Ross and Renyi, 1969).


Biochemical Mechanism Stereotyped Behavior Monoamine Oxidase Inhibitor Brain Dopamine Cocaine Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, H., Braestrup, C., and Randrup, A.: Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms, Brain, Behay. and Evol. 11, 365–373 (1975).CrossRefGoogle Scholar
  2. Arnfred, T. and Randrup, A.: Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behavior, Acta Pharmac. Tox. 26, 384–394 (1968).CrossRefGoogle Scholar
  3. Asher, I.M. and Aghajanian, G.K.: 6-Hydroxydopamine lesions of olfactory tubercles and caudate nuclei: Effect on amphetamine-induced stereotyped behavior in rats, Brain Res. 82, 1–12 (1974).PubMedCrossRefGoogle Scholar
  4. Azzaro, A.J., Ziance, R.J., and Rutledge, C.O.: The importance of neuronal uptake of amines for amphetamine-induced release of 3H-norepinephrine from isolated brain tissue, J. Pharm. exp. Ther. 189, 110–118 (1974).Google Scholar
  5. Beretta, C., Ferrini, R., and Glässer, A.H.: 1, 6-dimethyl-8 8-carbobenzyloxy-aminomethyl-l0a-ergoline, a potent and long-lasting 5hydroxytryptamine antagonist, Nature 207, 421–422 (1965).Google Scholar
  6. Breese, G.R., Cooper, B.R., and Mueller, R.A.: Evidence for involvement of 5-hydroxytryptamine in the actions of amphetamine, Br. J. Pharmacol. 52, 307–314 (1974).PubMedGoogle Scholar
  7. Braestrup, C.: Identification of free and conjugated 3-methoxy-4hydroxyphenylglycol (MOPEG) in rat brain by gas chromatography and mass fragmentography, Anal. Biochem. 55, 420–431 (1973).PubMedCrossRefGoogle Scholar
  8. Braestrup, C., Andersen, H., and Randrup, A.: The monoamine oxidase B inhibitor deprenyl potentiates phenylethylamine behavior in rats without inhibition of catecholamine metabolite formation, Eur. J. Pharmacol. 34, 181–187 (1975).PubMedCrossRefGoogle Scholar
  9. Buus Lassen, J., Petersen, E., Kjellberg, B., and Olsson, S.: Com-parative studies of a new 5HT-uptake inhibitor and some tricyclic thymoleptics, Eur. J. Pharmacol. 32, 108–115 (1975).PubMedCrossRefGoogle Scholar
  10. Buus Lassen, J.: Inhibition and potentiation of apomorphine-induced hypermotility in rats by neuroleptics, Eur. J. Pharmac. (In press).Google Scholar
  11. Christie, J.E. and Crow, T.J.: Possible role of dopamine-containing neurones in the behavioural effects of cocaine, Br. J. Pharmacol. 42, 643P - 645P (1971).PubMedGoogle Scholar
  12. Corrodi, H.: Blockade of the psychotic syndrome caused by nialamide in mice, J. Pharm. Pharmac. 18, 197–198 (1966).CrossRefGoogle Scholar
  13. Costall, B. and Naylor, R.J.: Extrapyramidal and mesolimbic involve- ment with the stereotypic activity of d-and i-amphetamine, Eur. J. Pharmacol. 25, 121–129 (1974a).PubMedCrossRefGoogle Scholar
  14. Costall, B. and Naylor, R.J.: Mesolimbic involvement with behavioral effects indicating antipsychotic activity, Eur. J. Pharmacol. 27, 46–58 (1974b).PubMedCrossRefGoogle Scholar
  15. Costall, B. and Naylor, R.J.: The behavioural effects of dopamine applied intracerebrally to areas of the mesolimbic system, Eur. J. Pharmacol. 32, 87–92 (1975).PubMedCrossRefGoogle Scholar
  16. Creese, I. and Iversen, S.D.: The pharmacological and anatomical substrates of the amphetamine response in the rat, Brain Res. 83, 419–436 (1975).PubMedCrossRefGoogle Scholar
  17. Ferrini, R. and Glässer, A.: Antagonism of central effects of tryptamine and 5-hydroxytryptophan by 1,6-dimethyl-8 8-carbobenzyl-oxyaminomethyl-l0a-ergoline, Psychopharmacologia (Berl. ) 8, 271–276 (1965).Google Scholar
  18. Fog, R., Randrup, A., and Pakkenberg, H.: Lesions in corpus striatum and cortex of rat brains and the effects on pharmacologically induced stereotyped, aggressive and cataleptic behavior, Psychopharmacologia 18, 346–356 (1970).PubMedCrossRefGoogle Scholar
  19. Foldes, A. and Costa, E.: Relationship of brain monoamine and loco-motor activity in rats, Biochem. Pharmacol. 24, 1617–1621, (1975).PubMedCrossRefGoogle Scholar
  20. Friedman, E., Gershon, S., and Rotrosen, J.: Effects of acute cocaine treatment on the turnover of 5-hydroxytryptamine in the rat brain, Br. J. Pharmacol. 54, 61–64 (1975).PubMedGoogle Scholar
  21. Fuxe, K., Hamberger, B., and Malmfors, T.: The effect of drugs on accumulation of monoamines in tubero-infundibular dopamine neurons, Eur. J. Pharmacol. 1, 334–341 (1967).CrossRefGoogle Scholar
  22. Galambos, E., Pfeifer, A.K., György, L., and Molnar, J.: Study on the excitation induced by amphetamine, cocaine and a-methyltryptamine, Psychopharmacologia (Berl.) 11, 122–129 (1967).CrossRefGoogle Scholar
  23. Goldberg, S.R.: Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey, J. Pharmacol. exp. Ther. 186, 18–30 (1973).PubMedGoogle Scholar
  24. Grabowska, M. and Michaluk, J.: On the role of serotonin in apomorphine-induced locomotor stimulation in rats, Pharmacol. Biochem. Behay. 2, 263–266 (1974).CrossRefGoogle Scholar
  25. Grahame-Smith, D.G.: Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and 1-tryptophan, J. Neurochem. 18, 1053–1066 (1971).PubMedCrossRefGoogle Scholar
  26. Grahame-Smith, D.G. and Green, A.R.: The role of brain dopamine in the hyperactivity syndrome produced in rats after administration of 1-tryptophan and a monoamine oxidase inhibitor, Br. J. Pharmac. Chemother. 50, 442–443 (1974).Google Scholar
  27. Green, A.R. and Grahame-Smith, D.G.: The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats, Neuropharmacol. 13, 949–959 (1974).CrossRefGoogle Scholar
  28. Haigler, H.J. and Aghajanian, G.K.: Peripheral serotonin antagonists: Failure to antagonize serotonin in brain areas receiving a prominent serotonergic input, J. Neural Transco. 35, 257–273 (1974).CrossRefGoogle Scholar
  29. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study, Acta Physiol. Scand., Suppl. 295, (1967).Google Scholar
  30. Harris, J.E. and Baldessarini, R.J.: Uptake of [3H]-catecholamines by homogenates of rat corpus striatum and cerebral cortex: Effects of amphetamine analogues, Neuropharmacol. 12, 669–679 (1973).CrossRefGoogle Scholar
  31. Heikkila, R.E., Orlansky, H., Mytilineou, C., and Cohen, G.: Amphetamine: Evaluation of d-and 1-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex, J. Pharm. exp. Ther. 194, 47–56 (1975).Google Scholar
  32. Hertting, G., Axelrod, J., and Whitby, L.G.: Effect of drugs on the uptake and metabolism of 3H-norepinephrine, J. Pharm. exp. Ther. 134, 146–153 (1961).Google Scholar
  33. Iversen, S.D.: Neural substrates mediating amphetamine responses. In: Cocaine and Other Stimulants. Ellinwood, E.H. and Kilbey, M.M., Eds. New York: Plenum Press, 1976.Google Scholar
  34. Kelly, P.H., Seviour, W., and Iversen, S.: Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res. 94, 507522 (1975).Google Scholar
  35. Knapp, S. and Mandell, A.J.: Narcotic drugs: Effects on the serotonin biosynthetic systems of the brain, Science 177, 1209–1211 (1972).PubMedCrossRefGoogle Scholar
  36. Kobinger, W.: Differentiation between the sedative actions of 5hydroxytryptamine and reserpine in mice by means of two stimulating substances, Acta.Pharmac. Tox. 14, 138–147 (1958).CrossRefGoogle Scholar
  37. Koe, B.K. and Weissman, A.: p-Chlorophenylalanine: A specific depletor of brain serotonin, J. Pharm. exp. Ther. 154, 499–516 (1966).Google Scholar
  38. Langer, S.Z. and Enero, M.A.: The potentiation of responses to adrenergic nerve stimulation in the presence of cocaine: Its relationship to the metabolic fate of released norepinephrine, J. Pharm. exp. Ther. 191, 431–443 (1974).Google Scholar
  39. Macphail, R.C. and Seiden, L.S.: Time course for the effects of cocaine on fixed-ratio water-reinforced responding in rats, Psychopharmacologia (Berl.) 44, 1–4 (1975).Google Scholar
  40. Maj, J., Przegalifiski, E., and Wielosz, M.: Disulfiram and the drug-induced effects of motility, J. Pharm. Pharmac. 20, 247–248 (1968).CrossRefGoogle Scholar
  41. Matthysse, S.: Antipsychotic drug actions: A clue to the neuropathology of schizophrenia, Fed. Proc. 32, 200–205 (1973).PubMedGoogle Scholar
  42. Matussek, N. and Rüther, E.: Wirkungsmechanismus der Reserpinumkehr mit Desmethylimipramin, Med. Pharmacol. Exp. 12, 217–225 (1965).Google Scholar
  43. Mawson, C. and Whittington, H.: Evaluation of the peripheral and central antagonistic activities against 5-hydroxytryptamine of some new agents, Br. J. Pharmacol. 39, 223P - 224P (1970).PubMedGoogle Scholar
  44. Modigh, K. and Svensson, T.H.: On the role of central nervous system catecholamines and 5-hydroxytryptamine in the nialamide-induced behavioral syndrome, Br. J. Pharmacol. 46, 32–45 (1972).PubMedGoogle Scholar
  45. Mogilnicka, E. and Braestrup, C.: Evidence for a noradrenergic in-volvement in stereotyped behavior induced by amphetamine, J. Pharm. Pharmac. (in press).Google Scholar
  46. Nielsen, M.: The influence of desipramine and amitriptyline on the accumulation of 3H-noradrenaline and its two major metabolities formed from 3H-tyrosine in the rat brain, J. Pharm. Pharmac. 27, 207–209 (1975).CrossRefGoogle Scholar
  47. Pfeifer, A.K., Galambos, E., and György, L.: Some central nervous properties of diethyldithiocarbamate, J. Pharm. Pharmac. 18, 254 (1966).CrossRefGoogle Scholar
  48. Pickens, R., Thompson, T., and Yokel, R.A.: Characteristics of amphetamine self administration by rats. In: Current Concepts on Amphetamine Abuse. Ellinwood, E.H. and Cohen, S., Eds., pp. 43–48. Washington, D.C.: U.S. Government Printing Office, 1972.Google Scholar
  49. Pijnenburg, A.J.J. and van Rossum, J.M.: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens, J. Pharm. Pharmac. 25, 1003–1005 (1973).CrossRefGoogle Scholar
  50. Pijnenburg, A.J.J., Honig, W.M.H. and van Rossum, J.M.: Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rats, Psychopharmacologia (Berl.) 41, 87–95 (1975a).CrossRefGoogle Scholar
  51. Pijnenburg, A.J.J., Honig, W.M.H., and van Rossum, J.M.: Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats, Psychopharmacologia (Berl.) 41, 175–180 (1975b).CrossRefGoogle Scholar
  52. Post, R.M.: Cocaine psychoses: A continuum model, Am. J. Psychiat. 132, 225–231 (1975).PubMedGoogle Scholar
  53. Randrup, A., Munkvad, I., and Scheel-Krüger, J.: Mechanisms by which amphetamines produce stereotypy, aggression and other behavioural effects. In: Psychopharmacology, Sexual Disorders and Drug Abuse. Ban, T., Boissier, J., Gessa, G., Heimann, H., Hollister, L., Lehmann, H., Munkvad, I., Steinberg, H., Sulser, F., Sund-wall, A., and dinar, O., Eds., pp. 659–673. Amsterdam: North-Holland Publishing Company, 1973. Prague: Avicenum Czechoslovak Medical Press, 1973.Google Scholar
  54. Randrup, A., Munkvad, I., Fog, R., and Ayhan, I.H.: Catecholamines in activation, stereotypy, and level of mood. In: Catechol-amines and Behavior. Friedhoff, A.J., Ed., pp. 89–107. New York: Plenum Press, 1975.Google Scholar
  55. Roberts, D.C.S., Zis, A.P., and Fibiger, H.C.: Ascending catecholamine pathways and amphetamine-induced locomotor activity: Importance of dopamine and apparent non-involvement of norepinephrine, Brain Res. 93, 441–454 (1975).PubMedCrossRefGoogle Scholar
  56. Rolinski, Z. and Scheel-Krüger, J.: The effect of dopamine and nor-adrenaline antagonists on amphetamine induced locomotor activity in mice and rats, Acta Pharmac. Tox. 33, 385–389 (1973).CrossRefGoogle Scholar
  57. Ross, S.B. and Renyi, A.L.: Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents, Eur. J. Pharmacol. 2, 181–186 (1967).PubMedCrossRefGoogle Scholar
  58. Ross, S.B. and Renyi, A.L.: Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue, Eur. J. Pharmacol. 7, 270277 (1969).Google Scholar
  59. Sahakian, B.J. and Robbins, T.W.: The effects of test environment and rearing condition on amphetamine-induced stereotypy in the guinea pig, Psychopharmacologia 45, 115–117 (1975).CrossRefGoogle Scholar
  60. Samanin, R. and Garattini, S.: The serotonergic system in the brain and its possible functional connections with other aminergic systems, Life Sci. 17, 1201–1210 (1975).PubMedCrossRefGoogle Scholar
  61. Schanberg, S.M. and Cook, J.D.: Effects of acute and chronic meth-amphetamine on brain norepinephrine metabolism. In: Current Concepts on Amphetamine Abuse. Ellinwood, E.H. and Cohen, S., Eds., pp. 87–95. Washington, D.C.: U.S. Government Printing Office, 1972.Google Scholar
  62. Scheel-Krüger, J.: Central effects of anticholinergic drugs measured by the apomorphine gnawing test in mice, Acta Pharmac. Tox. 28, 1–16 (1970).CrossRefGoogle Scholar
  63. Scheel-Krüger, J.: Comparative studies of various amphetamine analogues demonstrating different interactions with the metabolism of the catecholamines in the brain, Eur. J. Pharmacol. 14, 47–59 (1971).PubMedCrossRefGoogle Scholar
  64. Scheel-Krüger, J.: Behavioural and biochemical comparison of amphetamine derivatives, cocaine, benztropine and tricyclic antidepressant drugs, Eur. J. Pharmacol. 18, 63–73 (1972).PubMedCrossRefGoogle Scholar
  65. Scheel-Krüger, J., Braestrup, C., and Nielsen, M.: Feedback regu-lation of brain noradrenaline synthesis and release in vivo after treatment with amphetamines and tricyclic antidepressant drugs. In: Chemical Tools in Catecholamine Research. Alm-green, O., Carlsson, A., and Engel, J., Eds., pp. 227–234. Amsterdam: North-Holland Publishing Company, 1975.Google Scholar
  66. Scheel-Krüger, J. and Jonas, W.: Pharmacological studies on tetra- benazine-induced excited behaviour of rats pretreated with amphetamine or nialamide, Arch. int. Pharmacodyn. 206, 47–65 (1973).PubMedGoogle Scholar
  67. Scheel-Krüger, J. and Hasselager, E.: Studies of various amphetamines, apomorphine and clonidine on body temperature and brain 5-hydroxytryptamine metabolism in rats, Psychopharmacologia (Berl.) 36, 189–202 (1974).Google Scholar
  68. Schelkunov, E.L.: Integrated effect of psychotropic drugs on the balance of cholino-, adrenö-, and serotoninergic processes in the brain as a basis of their gross behavioural and therapeutic actions, Act. Nerv. Super. (Praha) 9, 207–217 (1967).Google Scholar
  69. Schrold, J.: Behavioural effects of d-amphetamine alone and in combination with antidepressants, antihistamines or other psychotropic drugs in young chicks, Psychopharmacologia (Berl.) 23, 115–124 (1972).Google Scholar
  70. Schuster, C.R. and Wilson, M.L.: The effect of various pharmacological agents on cocaine self administration by rhesus monkeys. In: Current Concepts on Amphetamine Abuse. Ellinwood, E.H. and Cohen, S., Eds., pp. 37–41. Washington, D.C.: U.S. Government Printing Office, 1972.Google Scholar
  71. Simon, P., Sultan, Z., Chermat, R., and Boissier, J-R.: La cocaine, une substance amphétaminique? Un problème de psychopharmacologie experimentale, J. Pharmacol. (Paris) 3, 129–142 (1972).Google Scholar
  72. Snyder, S.H.: Catecholamines in the brain as mediators of amphet- amine psychosis, Arch. gen. Psychiat. 27, 169–179 (1972).PubMedCrossRefGoogle Scholar
  73. Squires, R.F. and Buus Lassen, J.: The inhibition of A and B forms of MAO in the production of a characteristic behavioural snydrome in rats after 1-tryptophan loading, Psychopharmacologia (Berl.) 41, 145–151 (1975).CrossRefGoogle Scholar
  74. Trendelenburg, U., Graefe, K-H., and Eckert, E.: The prejunctional effect of cocaine on the isolated nictitating membrane of the cat, Naunyn-Schmiedeberg’s Arch. Pharmacol. 275, 69–82 (1972).PubMedCrossRefGoogle Scholar
  75. Rossum, J.M.: Different types of sympathomimetic a-receptors, J. Pharm. Pharmac. 17, 202–216 (1965).CrossRefGoogle Scholar
  76. Rossum, J.M.: The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Neuropsychopharmacology. Brill, H., Cole, J.O., Deniker, P., Hippius, H., and Bradley, P.B., Eds., pp. 321–329. Amsterdam: Exerpta Medica Foundation (International Congress Series No. 129 ), 1967.Google Scholar
  77. Rossum, J.M.: Mode of action of psychomotor stimulant drugs, Int. Rev. Neurobiology 12, 307–383 (1970).CrossRefGoogle Scholar
  78. van Rossum, J.M., van Schoot, J.B., and Hurkman, J.A.T.M.: Mechanism of action of cocaine and amphetamine in the brain, Experientia 18, 229–230 (1962).PubMedCrossRefGoogle Scholar
  79. van Rossum, J.M. and Hurkman, J.A.T.M.: Mechanism of action of psychomotor stimulant drugs, Int. J. Neuropharmacol. 3, 227–239 (1964).CrossRefGoogle Scholar
  80. Wallach, M.B., Friedman, E., and Gershon, S.: Behavioral and neuro-chemical effects of psychotomimetic drugs in neonate chicks, Eur. J. Pharmacol. 17, 259–269 (1972).PubMedCrossRefGoogle Scholar
  81. Wallach, M.B. and Gershon, S.: A neuropsychopharmacological comparison of d-amphetamine, 1-DOPA and cocaine, Neuropharmacol. 10, 743–752 (1971).CrossRefGoogle Scholar
  82. Wallach, M.B. and Gershon, S.: The induction and antagonism of central nervous system stimulant-induced stereotyped behavior in the cat, Eur. J. Pharmacol. 18, 22–26 (1972).PubMedCrossRefGoogle Scholar
  83. Weiner, W.J., Goetz, C., Westheimer, R., and Klawans, H.L.: Serotonergic and antiserotonergic influences on amphetamine-induced stereotyped behavior, J. Neurol. Sci. 20, 373–379 (1973).PubMedCrossRefGoogle Scholar
  84. Willner, J.H., Samach, M., Angrist, B., Wallach, M.B., and Gershon, S.: Drug-induced stereotyped behavior and its antagonism in dogs, Commun. Behay. Biol. 5, 135–141 (1970).Google Scholar
  85. Winter, J.C.: The effects of 2,5-dimethoxy-4-methylamphetamine (DOM), 2,5-dimethoxy-4-ethylamphetamine (DOET), d-amphetamine, and cocaine in rats trained with mescaline as a discriminative stimulus, Psychopharmacologia (Berl.) 44, 29–32 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Jorgen Scheel-Krüger
    • 1
  • Claus Braestrup
    • 1
  • Mogens Nielson
    • 1
  • Krystyna Golembiowska
    • 2
  • Ewa Mogilnicka
    • 2
  1. 1.Psychopharmacological Research LaboratorySct. Hans Hospital, Department ERoskildeDenmark
  2. 2.Department of PharmacologyPolish Academy of SciencesKrakowPoland

Personalised recommendations