Advertisement

Enhancement of Cocaine-Induced Lethality by Phenobarbital

  • M. A. Evans
  • C. Dwivedi
  • R. D. Harbison
Part of the Advances in Behavioral Biology book series (ABBI, volume 21)

Abstract

Cocaine is a powerful central nervous system stimulant that produces intense excitation, euphoria, and restlessness in man. In laboratory animals the cortical action of cocaine is first manifested by an increase in well coordinated motor activity. As dosage is increased, the lower centers of the brain are progressively affected--producing tremors, convulsions, and, eventually, clonictonic convulsions. This central stimulation is followed by a progressive wave of depression beginning at the cortex and spreading downwards to the cerebrospinal axis (Ritchie and Chen, 1975). Lethality related to direct cardiac depression from cocaine overdose has been demonstrated within 2–3 minutes of intravenous administration; in 2–3 hours death due to respiratory paralysis associated with CNS depression has been observed (Casarett, 1975).

Keywords

Liver Microsome Microsomal Protein Mixed Function Oxidase Swiss Webster Mouse Microsomal Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casarett, M.G.: Social poisons. In: Toxicology, the Basic Science of Poisons. Casarett, L.J. and Doull, J., Eds., pp. 627–654. New York: MacMillan, 1975.Google Scholar
  2. Gornall, A.G., Bardowill, C.S., and David, M.M.: A rapid method of protein estimation, J. biol. Chem. 177, 751–756 (1949).PubMedGoogle Scholar
  3. Harbison, R.D. and Mantilla-Plata, B.: Prenatal toxicity, maternal distribution, and placental transfer of tetrahydrocannabinol, J. Pharmac. exp. Ther. 180, 446–453 (1972).Google Scholar
  4. Kalow, W.: Hydrolysis of local anesthetics by human serum cholinesterase, J. Pharmac. exp. Ther. 104, 122–127 (1952).Google Scholar
  5. La Du, B.N. and Snody, H.: Esterases of human tissues. In: Concepts of Biochemical Pharmacology. Brodie, B.B. and Gillette, J.R., Eds., Vol. 28, Part 2, pp. 474–482. New York: Springer-Verlag, 1971.Google Scholar
  6. Marver, H.S.: The role of heure in the synthesis and repression of microsomal protein. In: Microsomes and Drug Oxidation. Gillette, J.R., Conney, A.H., Cosmides, G.J., Estrabrooks, R.W., Fouts, J.R., and Mannering, G.J., Eds., pp. 126–137. New York: Academic Press, 1969.Google Scholar
  7. Masters, B.S.S. and Ziegler, D.M.: The distinct nature and function of NADPH-cytochrome c reductase and the NADPH-dependent mixed-function amine oxidase of porcine liver microsomes, Archs. Biochem. Biophys. 145, 358–364 (1971).CrossRefGoogle Scholar
  8. Miller, J.A.: Carcinogenesis by chemicals: An overview. G.H.A. Clowers Memorial Lecture, Cancer Res. 30, 559–576 (1970).PubMedGoogle Scholar
  9. Misra, A.L., Nayak, P.K., Patel, M.N., Vadlamani, N.L., and Mula, S.J.: Identification of norcocaine as a metabolite of 3H-cocaine in rat brain, Experientia 69, 1312–1314 (1974).CrossRefGoogle Scholar
  10. Misra, A.L., Nayak, P.K., Bloch, R., and Mulê, S.J.: Estimation and disposition of 3H-benzoylecgonine and pharmacological activity of some cocaine metabolites, J. Pharm. Pharmac. 27, 784–787 (1975).CrossRefGoogle Scholar
  11. Montesinos, F.: The metabolism of cocaine, Bull. Narcot. 17, 1126 (1965).Google Scholar
  12. Nayak, P.K., Misra, A.L., Patel, M.N., and Mulé, S.J.: Preparation of radiochemically pure randomly labeled and ring labeled 3H-cocaine, Radiochem. Radioanal. Letters 16, 167–171 (1974).Google Scholar
  13. Orrenius, S. and Ernster, L.: Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes, Biochem. Biophys. Res. Commun. 16, 60–67 (1964).CrossRefGoogle Scholar
  14. Pettit, F.H. and Ziegler, D.M.: The catalytic demethylation of N, N-dimethylaniline-N-oxide by liver microsomes, Biochem. Biophys. Res. Commun. 13, 193–197 (1963).CrossRefGoogle Scholar
  15. Radomski, J.L. and Brill, E.: Bladder cancer induction by aromatic amines: Role of N-hydroxy metabolites, Science 167, 992–993 (1970).PubMedCrossRefGoogle Scholar
  16. Rane, A. and Ackermann, E.: Evidence for drug metabolism in the human fetal liver. Studies in different cell fractions, Acta Pharmac. Tox., Suppl. 29, 84 (1971).Google Scholar
  17. Ritchie, J.M. and Chen, P.J.: Local anesthetics. In: The Pharmacological Basis of Therapeutics. Goodman, L.S. and Gilman, A., Eds., pp. 379–403. New York: MacMillan, 1975.Google Scholar
  18. Uehleke, H.: Biologische Oxydation und Reduktion am Stickstoff aromatischer Aminound Nitroderivate und ihre Folgen für den organismus, Progr. Drug Res. 8, 195–260 (1965).Google Scholar
  19. Woods, L.A., McMahon, F.G., and Seevers, M.H.: Distribution and metabolism of cocaine in the dog and rabbit, J. Pharmac. exp. Ther. 101, 200–204 (1951).Google Scholar
  20. Ziegler, D.M. and Mitchell, C.H.: Microsomal oxidases. IV. Properties of a mixed-function amine oxidase isolated from pig liver microsomes, Arch. Biochem. Biophys. 150, 116–125 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • M. A. Evans
    • 1
  • C. Dwivedi
    • 1
  • R. D. Harbison
    • 1
  1. 1.Department of Pharmacology and Center in ToxicologyVanderbilt Medical CenterNashvilleUSA

Personalised recommendations