A Functional Analysis of the Septal Nuclei

  • J. F. DeFrance
Part of the Advances in Behavioral Biology book series (ABBI, volume 20)


At the end of the nineteenth century and into the early part of the twentieth, a number of investigators (22,23,25,32,44,54), emphasized the intimate relationship between the hippocampal formamation and the septum provided by the fimbria-fornix system. The fimbria-fornix system was thought to arise exclusively from the hippocampal formation and subiculum. Cajal (44) epitomized the relationship by stating that the septum should be considered as a center associated with, or subordinate to, the hippocampus. Later, Crosby (12) suggested that there might be a reciprocal connection from the septum to the hippocampus within the fimbria-fornix pathway. This connection was subsequently confirmed (13,46).


Test Response Principal Cell Field Response Septal Nucleus Septal Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, P., Bland, B. H., and Dudar, J. D.: Organization of the hippocampal output. Exptl. Brain Res., 17 (1973) 152–168.CrossRefGoogle Scholar
  2. 2.
    Andersen P., Bliss, T. V. P., and Skrede, K. K.: Unit analysis of hippocampal population spikes. Exptl. Brain Res., 13 (1971) 208–221.Google Scholar
  3. 3.
    Andersen, P., Bliss, T. V. P., and Skrede, K. K.: Lamellar organization of hippocampal excitatory pathways. Exptl. Brain Res., 13 (1971) 222–238.Google Scholar
  4. 4.
    Andersen, P., and Eccles, J. D.: Inhibitory phasing of neuronal. Nature, 195 (1962) 645–647.CrossRefGoogle Scholar
  5. 5.
    Andy, O. J. and Stephan, H.: The nuclear configuration of the septum of galago demidovii. J. Comp. Neurol., 111 (1959) 503–545.CrossRefGoogle Scholar
  6. 6.
    Andy, O. J. and Stephan, H.: Septal nuclei in the Soricidae (Insectivores): Cytoarchitectonic study. J. Comp. Neurol., 117 (1961) 251–273.CrossRefGoogle Scholar
  7. 7.
    Andy, O. J. and Stephan, H.: The septum of the cat. Charles C. Thomas, Springfield, Ill. (1964).Google Scholar
  8. 8.
    Andy, O. J. and Stephan, H.: The septum in the human brain. J. Comp. Neurol., 133 (1968) 383–410.CrossRefGoogle Scholar
  9. 9.
    Chronister, R. B., Sikes, R. W., Farnell, K., White, L. E., and DeFrance, J. F.: The bed nucleus of the fornix longus: Septal or Hippocampal? (Submitted for publication).Google Scholar
  10. 10.
    Chronister, R. B., Sikes, R. W., White, L. E. and DeFrance, J. F.: The septal region of the telencephalon: a Golgi analysis (in preparation).Google Scholar
  11. 11.
    Chronister, R. B., and White, L. E.: Comparative analysis of allocortex. Paper presented at the Richard Lende Memorial Symposium. Albany, (1974).Google Scholar
  12. 12.
    Crosby, E. C.: The forebrain of Alligator mississippienis. J. Comp. Neurol., 27 (1917) 325–402.CrossRefGoogle Scholar
  13. 13.
    Daitz, H. M. and Powell, T. P. S.: Studies of the connexions of the fornix system J. Neur. Neurosurg. and Psychiat., 17 (1954) 75–82.Google Scholar
  14. 14.
    DeFrance, J. F., Shimono, T., and Kitai, S. T.: Hippocampal inputs to the lateral septal nucleus: Patterns of facilitation and inhibition. Brain Res., 37 (1972) 333–339.CrossRefGoogle Scholar
  15. 15.
    DeFrance, J. F., Kitai, S. T., Hatada, K., and Christensen, C.: Contrasting effects of fimbría stimulation in the septum of the cat. Brain Res., 58 (1973) 240–244.CrossRefGoogle Scholar
  16. 16.
    DeFrance, J. F., Kitai, S. T., and Shimono, T.: Electrophysiological analysis of the hippocampal-septal projections: I. Response and topographical characteristics. Exptl. Brain Res., 17 (1973) 447–462.Google Scholar
  17. 17.
    DeFrance, J. F., Kitai, S. T., and Shimono, T.: Electrophysiological analysis of the hippocampal-septal projections: II. Functional characteristics. Exptl. Brain Res., 17 (1973) 463–476.Google Scholar
  18. 18.
    DeFrance, J. F., Yoshihara, H., and Chronister, R. B.: Electrophysiological studies of the septal nuclei: II. The Medial Septal Region (in preparation).Google Scholar
  19. 19.
    DeFrance, J. F., Yoshihara, H., McCrea, R. A., and Kitai, S. T.: Pharmacology of the inhibition in the lateral septal region. Exptl. Neurol., 17 (1975) 502–523.Google Scholar
  20. 20.
    Eccles, J. C. and Krnjevic, K.: Presynaptic changes associated with post-tetanic potentiation in the spinal cord. J. Physiol. (Lond.), 149 (1959) 274–287.Google Scholar
  21. 21.
    Edinger, H., Siegel, A., and Trioana, R.: Single unit analysis of the hippocampal projections to the septum in the cat. Exptl. Neurol., 41 (1973) 569–583.CrossRefGoogle Scholar
  22. 22.
    Elliot Smith, G.: The fornix superior. J. Anat. (Lond.), 31 (1897) 80–94.Google Scholar
  23. 23.
    Elliot Smith, G.: The relation of the fornix to the margin of the cerebral cortex. J. Anat. (Lond.), 32 (1898) 23–58.Google Scholar
  24. 24.
    Fox, C. A.: Certain basal telencephalic centers in the cat. J. Comp. Neurol., 72 (1940) 1–62.CrossRefGoogle Scholar
  25. 25.
    Fox, C. A.: The stria terminalis, longitudinal association bundle and precommissure fornix in the cat. J. Comp. Neurol., 79 (1943) 277–295.CrossRefGoogle Scholar
  26. 26.
    Freygang, W. H., and Frank, K.: Extracellular potentials from single spinal motorneurons. J. Gen. Physiol., 42 (1959) 749–760.Google Scholar
  27. 27.
    Green, J. D., and Arduini, A.: Hippocampal electrical activity in arousal. J. Neurophysiol., 17 (1954) 533–557.Google Scholar
  28. 28.
    Herrick, C. J.: The morphology of the forebrain in amphibia and reptilia. J. Comp. Neurol., 20 (1910) 413–547.CrossRefGoogle Scholar
  29. 29.
    Herrick, C. J.: The amphibian forebrain. Vi. Necturus. J. Comp. Neurol., 58 (1933) 1–288.CrossRefGoogle Scholar
  30. 30.
    Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethyl-ammonium ion. J. Gen. Physiol., 50 (1967) 1287–1302.Google Scholar
  31. 31.
    Katz, B.: A note on itneraction between nerve fibers. J. Physiol., 100 (1942) 369–371.Google Scholar
  32. 32.
    Kölliker, A.: Über den Fornix longus (Forel) und die Beziehungen desselben zum Marke des Gyrus fornicatus. Anat. Anz., 9 (1894) 516Google Scholar
  33. 33.
    Kuffler, S. W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16 (1953) 37–68.Google Scholar
  34. 34.
    Lauer, E. W.: The nuclear pattern and fiber connections of certain basal telencephalio centers in the macaque. J. Comp. Neurol., 82 (1945) 215–254.CrossRefGoogle Scholar
  35. 35.
    Loo, Y. T.: The forebrain of the opossum, Didelphis virginiana. Part II. Histology J. Comp. Neurol., 52 (1931) 1–148.CrossRefGoogle Scholar
  36. 36.
    McLennan, H., and Miller, J. J.: The hippocampal control of neuronal discharges in the septum of the rat. J. Physiol., 237 (1974) 607–624.Google Scholar
  37. 37.
    Nauta, W. J. H.: An experimental study of the fornix system in the rat. J. Comp. Neurol., 104 (1956) 247–271.Google Scholar
  38. 38.
    Petsche, H., Gogolak, G., and Van Zwieten, P. A.: Rhythmicity of septal cell discharges at various levels of reticular excitation. EGG Clin. Neurophysiol., 19 (1965) 25–33.CrossRefGoogle Scholar
  39. 39.
    Petsche, H., Stumpf, Ch., and Gogolak, G.: The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. control of hippocampal arousal activity by the septal cells. EGG Clin. Neurophysiol., 14 (1962) 202–211.CrossRefGoogle Scholar
  40. 40.
    Poletti, C. E., Kinnard, M. A., and MacLean, P. D.: Hippocampal influence on unit activity of hypothalamus, pre-optic region, and basal forebrain in awake, sitting squirrel monkeys. J. Neurophysiol., 36 (1973) 308–324.Google Scholar
  41. 41.
    Raisman, G.: The connexions of the septum. Brain, 89 (1966) 317–348.CrossRefGoogle Scholar
  42. 42.
    Raisman, G.: A comparison of the mode of termination of the hippocampal and hypothealamic afferents to the septal nuclei as revealed by electron microscopy of degeneration. Exptl. Brain Res., 7 (1969) 317–343.CrossRefGoogle Scholar
  43. 43.
    Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distribution of synaptic input. J. Neurophysiol., 30 (1967) 1138–1168.Google Scholar
  44. 44.
    Ramon, Y., Cajal, S.: Studies on the cerebral cortex. Translated by Kraft. The Year Book Publishers, Chicago (1955) 135–163.Google Scholar
  45. 45.
    Ranck, J. B., Jr.: Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Exptl. Neurol., 41 (1973) 461–555.Google Scholar
  46. 46.
    Rose, J. E., and Woolsey, C. N.: A study of thalamus-cortical relations in the rabbit. Bull. John Hopkins Hosp., 73 (1943) 65–128.Google Scholar
  47. 47.
    Ryall, R. W.: Renshaw cell mediated inhibition of Renshaw cells: patterns of excitation and inhibition from impulses in motor axon collaterals. J. Neurophysiol., 33 (1970) 257–270.Google Scholar
  48. 48.
    Siegel, A., Edinger, H., and Ohgami, S.: The topographical organization of the hippocampal projections to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J. Comp. Neurol., 157 (1974) 359–378.CrossRefGoogle Scholar
  49. 49.
    Siegel, A., and Tassoni, J. R.: Differential efferent projections from the ventra-and dorsal hippocampus of the cat. Brain Behay. Evol., 4 (1971) 185–200.CrossRefGoogle Scholar
  50. 50.
    Siegel, A., and Tassoni, J, P.: Differential efferent projections of the lateral and medial septal nuclei to the hippo-campus in the cat. Brain Behay. Evol., 4 (1971) 201–219.CrossRefGoogle Scholar
  51. 51.
    Terzuolo, C. A., and Araki, T.: An analysis of intra-versus extracellular potentials changes associated with activity of single spinal motoneurons. Ann. N. Y. Acad., 94 (1961) 547–558.CrossRefGoogle Scholar
  52. 52.
    Thomas, R. C., and Wilson, V. J.: Precise localization of Renshaw cells with a new marking technique. Nature, 206 (1965) 211–213.Google Scholar
  53. 53.
    Young, M. W.: The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J. Comp. Neurol., 65 (1936) 295–401.CrossRefGoogle Scholar
  54. 54.
    Zuckerkandl, E.: Das Riechbündel des Ammonshornes. Anat. Anz., 3 (1888) 425–434.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • J. F. DeFrance
    • 1
  1. 1.Morin Memorial Laboratory, Department of AnatomyWayne State UniversityDetroitUSA

Personalised recommendations