Autoradiographic Studies of the Development and Connections of the Septal Area in the Rat

  • L. W. Swanson
  • W. M. Cowan
Part of the Advances in Behavioral Biology book series (ABBI, volume 20)


The septum, or parolfactory area as it used to be called, occupies a pivotal position within the forebrain, being interposed between the hippocampus and amygdala on the one hand, and the hypothalamus and habenula on the other. Because of its topographic and connectional relationships, considerations of septal function have generally centered on its role as a component of the so-called limbic system. Interest in the neurobiology of the septum was particularly stimulated by reports of a lesion-induced “septal rage syndrome” (8), and the phenomenon of septally mediated intracranial self-stimulation (48). Recent advances in our understanding of the functional significance of the septal area are amply reviewed in other contributions to this Volume; it is our purpose here to review briefly the results of recent neuroanatomical studies of the development and connections of the septum. This is particularly timely in view of the fact that the septum and hippocampus are increasingly coming to be regarded as a model system for the study of neuronal plasticity (9,45,52) and development (54,61).


Anterior Commissure Medial Forebrain Bundle Lateral Septum Lateral Hypothalamic Area Stria Terminalis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akert, K., H. D. Potter, and J. W. Anderson. The subfornical organ in mammals. I. Comparative and topographic anatomy. J. Comp. Neur., 116 (1961) 1–13.CrossRefGoogle Scholar
  2. 2.
    Anden, N. E., A. Dahlstrom, K. Fuxe, K. Larsson, L. Olson, and U. Ungerstedt. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand., 67 (1966) 313–326.CrossRefGoogle Scholar
  3. 3.
    Andersen, P., T. U. P. Bliss, and K. K. Skrede. Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res., 13 (1971) 222–238.Google Scholar
  4. 4.
    Andy, O. J., and H. Stephan. The Septum of the Cat. C. C. Thomas, Springfield, 1964.Google Scholar
  5. 5.
    Angevine, J. B. Time of neuron origin in the diencephalon of the mouse. An autoradiographic study, J. Comp. Neur., 139 (1970) 129–188.CrossRefGoogle Scholar
  6. 6.
    Ariens Kappers, C. U., G. C. Huber, and E. C. Crosby. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. New York: Hafner Publishing Co., 1936.Google Scholar
  7. 7.
    Blackstad, T. W., K. Brink, J. Hem, and B. Jeune. Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J. Comp. Neur., 138 (1970) 433–450.CrossRefGoogle Scholar
  8. 8.
    Brady, N. V., and W. J. H. Nauta. Subcortical mechanisms in emotional behavior; affective changes following septal forebrain lesions in the albino rat. J. Comp. Physiol. Psychol., 56 (1953) 339–346.CrossRefGoogle Scholar
  9. 9.
    Cotman, C. W., D. A. Matthews, D. Taylor, and G. Lynch. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Nat. Acad. Sci. USA, 70 (1973) 3473–3477.CrossRefGoogle Scholar
  10. 10.
    Cowan, W. M., and M. Cuénod. The use of axonal transport for the study of neural connections; A retrospective survey. In: The Use of Axonal Transport for Studies of Neuronal Connectivity. Internat. Symposium, Switzerland. M. Cuénod and W. M. Cowan, eds., Elsevier, Amsterdam, in press.Google Scholar
  11. 11.
    Cowan, W. M., D. I. Gottlieb, A. E. Hendrickson, J. L. Price, and T. A. Woolsey. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res., 37 (1972) 21–51.CrossRefGoogle Scholar
  12. 12.
    Cragg, B. G. The connections of the habenula in the rabbit. Exp. Neurol., 3 (1961a) 388–409.CrossRefGoogle Scholar
  13. 13.
    Cragg, B. G. Olfactory and other afferent connections of the hippocampus in the rabbit, rat, and cat. Exp. Neurol, 3 (1961b) 588–600.CrossRefGoogle Scholar
  14. 14.
    Cragg, B. G., and L. H. Hamlyn. Some commissural and septal connexions of the hippocampus in the rabbit. J. Physiol. (Lond.), 135 (1957) 460–485.Google Scholar
  15. 15.
    Creps, E. S. Time of neuron origin in preoptic and septal areas of the mouse: an autoradiographic study. J. Comp. Neur., 157 (1974) 161–243.CrossRefGoogle Scholar
  16. 16.
    Crosby, E. C., and R. T. Woodbourne. The comparative anatomy of the preoptic area and the hypothalamus. A. Res. Nerv. Ment. Dis., Proc., 20 (1940) 52–169.Google Scholar
  17. 17.
    Daitz, H. M., and T. P. S. Powell. Studies of the connexions of the fornix system. J. Neurol. Neurosurg. Psychiat., 17 (1954) 75–82.CrossRefGoogle Scholar
  18. 18.
    de Olmos, J. S., and W. R. Ingram. The projection field of the stria terminalis in the rat brain. An experimental study. J. Comp. Neur., 146 (1972) 303–334.CrossRefGoogle Scholar
  19. 19.
    Droz, B., H. L. Koenig, and L. Di Giamberardino. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of [3H] lysine. Brain Res., 60 (1973) 93–127.CrossRefGoogle Scholar
  20. 20.
    Elliot Smith, G. Some problems relating to the evolution of the brain. Arris and Gale Lectures. Lancet, 1 (1910) 106, 147–221.Google Scholar
  21. 21.
    Fox, C. A. Certain basal telencephalic centers in the cat. J. Comp. Neur., 72 (1940) 1–62.CrossRefGoogle Scholar
  22. 22.
    Fuxe, K. Evidence for the existence of monomine-containing neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta Physiol. Scand., Suppl. 247, 1965.Google Scholar
  23. 23.
    Gerebtzoff, M. A. Sur quelques voies d’association de l’écorce cérébrale (recherches anatomo-expérimentales). J. Belg. Neurol., 39 (1939) 205–221.Google Scholar
  24. 24.
    Guillery, R. W. Degeneration in the hypothalamic connexions of the albino rat. J. Anat., 91 (1957) 91–115.Google Scholar
  25. 25.
    Gurdjian, E. S. Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. J. Comp. Neur., 38 (1925) 128–163.CrossRefGoogle Scholar
  26. 26.
    Hendrickson, A. Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science, 165 (1969) 194–196.CrossRefGoogle Scholar
  27. 27.
    Hendrickson, A. E., N. Wagoner, and W. M. Dowan. An auto-radiographic and electron microscopic study of retino-hypothalamic connections. Z. Zellforsch., 135 (1972) 1–26.CrossRefGoogle Scholar
  28. 28.
    Hines, M. Studies on the growth and differentiation of the telencephalon in man. The fissure hippocampi. J. Comp. Neur., 34 (1922) 73–171.CrossRefGoogle Scholar
  29. 29.
    Hjorth-Simonsen, A. Some intrinsic connections of the hippo-campus in the rat: an experimental analysis. J. Comp. Neur., 147 (1973) 145–162.CrossRefGoogle Scholar
  30. 30.
    Hjorth-Simonsen, A., and B. Jeune. Origin and termination of the hippocampal perforant path in the rat studies by silver impregnation. J. Comp. Neur. 144 (1972) 215–231.CrossRefGoogle Scholar
  31. 31.
    Humphrey, T. The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J. Comp. Neur., 65 (1936) 603–711.Google Scholar
  32. 32.
    Johnston, J. B. The morphology of the septum, hippocampus and pallial commissures in reptiles and mammals. J. Comp. Neur., 23 (1913) 371–478.CrossRefGoogle Scholar
  33. 33.
    Johnston, J. B. Further contributions to the study of the evolu- tion of the forebrain. J. Comp. Neur., 35 (1923) 337–481.CrossRefGoogle Scholar
  34. 34.
    Knook, H. L. The Fibre-Connections of the Forebrain. F. A. Davis, Co., Philadelphia, 1966.Google Scholar
  35. 35.
    Kuhlenbeck, H., and W. Haymaker. The derivatives of the hypothalamus in the human brain; their relation to the extrapyramidal and autonomic systems. Mil. Surg., 105 (1949) 26–52.Google Scholar
  36. 36.
    Lasek, R., B. S. Joseph, and D. G. Whitlock. Evaluation of a radioautographic neuroanatomical tracing method. Brain Res., 8 (1968) 931–939.CrossRefGoogle Scholar
  37. 37.
    Lauer, E. W. The nuclear pattern and fiber connections of certain basal telencephalic centers in the macaque. J. Comp. Neur., 82 (1945) 215–254.CrossRefGoogle Scholar
  38. 38.
    La Vail, J., and W. M. Cowan. The development of the chick optic tectum. II. Autoradiographic studies. Brain Res., 28 (1971) 421–441.CrossRefGoogle Scholar
  39. 39.
    Lindvall, O. Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat. Brain Res., 87 (1975) 89–95.CrossRefGoogle Scholar
  40. 40.
    Lindvall, O., and A. Björklund. The organization of the ascending catecholamine neuron systems in the rat brain, as revealed by the glyoxylic acid fluorescence method. Acta Physiol. Scand., Suppl. 412, 1974.Google Scholar
  41. 41.
    Loo, Y. T. The forebrain of the opossum, Didelphis virginiana. J. Comp. Neur. 52 (1931) 1–148.CrossRefGoogle Scholar
  42. 42.
    Macchi, G. The ontogenetic development of the olfactory telencephalon in man. J. Comp. Neur., 95 (1951) 245–305.CrossRefGoogle Scholar
  43. 43.
    McLardy, T. Observations on the fornix of the monkey. I. Fiber studies. J. Comp. Neur., 103 (1955) 327–343.CrossRefGoogle Scholar
  44. 44.
    Mellgren, S. I., and B. Srebro. Changes in acetylcholinesterase and distribution of degeneration fibers in the hippocampal region after septal lesions in the rat. Brain Res., 52 (1973) 19–36.CrossRefGoogle Scholar
  45. 45.
    Moore, R. Y., A. Björklund, and U. Stenevi. Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res., 33 (1971) 13–35.CrossRefGoogle Scholar
  46. 46.
    Nadler, J. V., C. W. Cotman, and G. S. Lynch. Altered distribution of choline acetyltransf erase and acetylcholinesterase activities in the developing rat dentate gyrus following entorhinal lesion. Brain Res., 63 (1973) 215–230.CrossRefGoogle Scholar
  47. 47.
    Nauta, W. J. H., and W. Haymaker. Hypothalamic nuclei and fiber connections. In: The Hypothalamus. W. Haymaker, E. Anderson, and W. J. H. Nauta, eds., C. C. Thomas, Springfield, pp. 136–209, 1969.Google Scholar
  48. 48.
    Olds, J., and P. Milner. Positive reinforcement produced by electrical stimulation of septal areas and other regions of the rat brain. J. Comp. Physiol. Psychol, 47 (1954) 419–427.CrossRefGoogle Scholar
  49. 49.
    Papez, J. W. The embryological development of the hypothalamic area in mammals. A. Res. Nerv. Ment. Dis., Proc., 20 (1940) 31–51.Google Scholar
  50. 50.
    Raisman, G. The connexions of the septum. Brain, 89 (1966) 317–348.CrossRefGoogle Scholar
  51. 51.
    Raisman, G., W. M. Cowan, and T. P. S. Powell. An experimental analysis of the efferent projection of the hippocampus. Brain, 89 (1966) 83–108.CrossRefGoogle Scholar
  52. 52.
    Raisman, G., and P. M. Field. A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res., 50 (1973) 241–264.CrossRefGoogle Scholar
  53. 53.
    Rose, J. E. The ontogenetic development of the rabbit’s diencephalon. J. Comp. Neur., 77 (1942) 61–129.CrossRefGoogle Scholar
  54. 54.
    Schlessinger, A. R., W. M. Cowan, and D. I. Gottlieb. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neur., 159 (1975) 149–176.CrossRefGoogle Scholar
  55. 55.
    Shipley, M. T. The topographical and laminar organization of the presubiculum’s projection to the ipsi-and contralateral entorhinal cortex in the guinea pig. J. Comp. Neur., 160 (1975) 127–145.CrossRefGoogle Scholar
  56. 56.
    Sidman, R. L. Autoradiographic methods and principles for study of the nervous system with thymidine-H3. In: Contemporary Research Methods in Neuroanatomy. W. J. H. Nauta and S. O. E. Ebbesson, eds., Springer-Verlag, New York, pp. 252–274, 1970.CrossRefGoogle Scholar
  57. 57.
    Sidman, R. L. and P. Rakic. Neuronal migration, with special reference to developing human brain: a review. Brain Res., 62 (1973) 1–35.CrossRefGoogle Scholar
  58. 58.
    Sprague, J. M., and M. Meyer. An experimental study of the fornix in the rabbit. J. Anat., 84 (1950) 354–368.Google Scholar
  59. 59.
    Swanson, L. W., and W. M. Cowan. Hippocampo-hypothalamic connections: origin in subicular cortex, not Ammon’s horn. Science, 189 (1975) 303–304.CrossRefGoogle Scholar
  60. 60.
    Swanson, L. W., and W. M. Cowan. A note on the connections and development of the nucleus accumbens. Brain Res., 92 (1975) 324–330.CrossRefGoogle Scholar
  61. 61.
    Swanson, L. W., and W. M. Cowan. The morphology and time of neuron origin of the rat septal area. J. Comp. Neur., (in preparation), 1975.Google Scholar
  62. 62.
    Swanson, L. W., and W. M. Cowan. An autoradiographic study of the efferent connections of the rat septal area. J. Comp. Neur., (in preparation ), 1975.Google Scholar
  63. 63.
    Swanson, L. W., and W. M. Cowan. The extrinsic connections of the hippocampus. An autoradiographic study in the rat. J. Comp. Neur., (in preparation), 1975.Google Scholar
  64. 64.
    Swanson, L. W., W. M. Cowan, and E. G. Jones. An autoradio-graphic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J. Comp. Neur., 156 (1974) 143–164.CrossRefGoogle Scholar
  65. 65.
    Swanson, L. W., and B. K. Hartman. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker. J. Comp. Neur., (in press), 1975.Google Scholar
  66. 66.
    Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., Suppl. 367, 1971.Google Scholar
  67. 67.
    Voneida, T. J., and G. J. Royce. Ipsilateral connections of the gyrus proreus in the cat. Brain Res., 76 (1974) 393–400.CrossRefGoogle Scholar
  68. 68.
    Young, M. W. The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J. Comp. Neur., 65 (1936) 295–401.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • L. W. Swanson
    • 1
  • W. M. Cowan
    • 1
  1. 1.Departments of Biology, and Anatomy and NeurobiologyWashington UniversitySt. LouisUSA

Personalised recommendations