Advertisement

Behavioral Functions of the Septum: A Re-Analysis

  • Sebastian P. Grossman
Part of the Advances in Behavioral Biology book series (ABBI, volume 20)

Abstract

Behavioral investigations of the functions of the septum have a very brief but stormy history. Prior to the early 1960’s, there was only a gentle interest in the septum as a possible relay station along the circuit which Papez (107) had postulated as a substrate for “emotions” or “affect.” The few experimental investigations which were reported in the 1950’s generally agreed with such an interpretation in showing “rage,” increased startle reactions (9, 10), and faster acquisition of conditioned avoidance responses (CAR) (75) in rats with septal lesions. It was only after McCleary (91) followed up some of the implications of earlier electrophysiological (64) and behavioral (111) observations which suggested that the septal area might exercise important general inhibitory influences on autonomic functions as well as behavior, and demonstrated apparent inhibitory effects on passive avoidance behavior which were not readily compatible with the classic picture, that psychologists became seriously concerned about the septum. In the few years which have elapsed since then, a staggering number of reports of experimental work on the septum as well as a flood of theoretical interpretations of these data have been published. Just about every behavior and/or psychological function which has been investigated to date has been shown to be affected in some way by septal lesions, and attempts to account for these diverse effects in terms of meaningful neural dysfunctions have become increasingly convoluted and improbable. It is not possible to review this literature in any depth in the context of the present discussion, but I shall briefly summarize some of the major empirical observations and proposed interpretations before discussing some of our own attempts to understand this obviously very complex problem.

Keywords

Avoidance Behavior Avoidance Response American Psychological Association Septal Lesion Behavioral Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, S. S., and Harvey, J. A. Long-term effects of septal lesions and social experience on shock-elicited fighting in rats. J. Comp. Physiol. Psychol., 66 (1968) 596–602.CrossRefGoogle Scholar
  2. 2.
    Beatty, W. W., and Schwartzbaum, J. S. Enhanced reactivity to quinine and saccharine solutions following septal lesions in the rat. Science, 8 (1967) 483–484.Google Scholar
  3. 3.
    Beatty, W. W., and Schwartzbaum, J. S. Consummatory behavior for sucrose following septal lesions in the rat. J. Comp. Physiol. Psychol., 65 (1968) 93–102.CrossRefGoogle Scholar
  4. 4.
    Beatty, W. W., and Schwartzbaum, J. S. Commonality and specificity of behavioral dysfunctions following septal and hippocampal lesions in rats. J. Comp. Physiol. Psychol, 66 (1968) 60–68.CrossRefGoogle Scholar
  5. 5.
    Besch, N. F., and Van Dyne, G. C. Effects of locus and size of lesion on consummatory behavior in the rat. Physiol. and Behay., 10 (1973) 379–384.CrossRefGoogle Scholar
  6. 6.
    Black, S. L., and Morgenson, G. J. The regulation of serum sodium in septal-lesioned rats: A test of two hypotheses. Physiol. and Behay., 10 (1973), 379–384.CrossRefGoogle Scholar
  7. 7.
    Blanchard, R. J., and Blanchard, D. C. Limbic lesions and reflexive fighting. J. Comp. Physiol. Psychol, 66 (1968) 603–605.CrossRefGoogle Scholar
  8. 8.
    Blass, E. M., and Hanson, D. G. Primary hyperdipsia in the rat following septal lesions. J. Comp. Physiol. Psychol, 70 (1970) 87–93.CrossRefGoogle Scholar
  9. 9.
    Brady, J. V., and Nauta, W. J. H. Subcortical mechanisms in emotional behavior: Affective changes following septal forebrain lesions in the albino rat. J. Comp. Physiol. Psychol., 46 (1953) 339–346.CrossRefGoogle Scholar
  10. 10.
    Brady, J. V., and Nauta, W. J. H. Subcortical mechanisms in emotional behavior: The duration of affective changes following septal and habenular lesions in the albino rat. J. Comp. Physiol. Psychol., 48 (1955) 412–420.CrossRefGoogle Scholar
  11. 11.
    Bunnell, B. N., and Smith, M. H. Septal lesions and aggressiveness in the cotton rat, Sigmodon hispidus. Psychon. Sci., 6 (1966) 443–444.Google Scholar
  12. 12.
    Bunnell, B. N., Bemporad, J. R., and Flesher, C. K. Septal forebrain lesions and social dominance behavior in the hooded rat. Psychon. Sci., 6 (1966) 207–208.Google Scholar
  13. 13.
    Caplan, M., and Stamm, J. DRL acquisition in rats with septal lesions. Psychon. Sci., 8 (1967) 5–6.Google Scholar
  14. 14.
    Carey, R. J. Independence of effects of septal ablation on water intake and response inhibition. Psychon. Sci., 8 (1967) 3–4.Google Scholar
  15. 15.
    Carey, R. J. Contrasting effects of increased thirst and septal ablations on DRL responding in rats. Physiol. and Behay., 2 (1967) 287–290.CrossRefGoogle Scholar
  16. 16.
    Carey, R. J. A further localization of inhibitory deficits resulting from septal ablation. Physiol. & Behay., 3 (1968) 645–649.CrossRefGoogle Scholar
  17. 17.
    Carey, R. J. Contrasting effects of anterior and posterior septal injury on thirst motivated behavior. Physiol. & Behay., 4 (1969) 759–764.CrossRefGoogle Scholar
  18. 18.
    Carlson, N. R. Two-way avoidance behavior of mice with limbic lesions, J. Comp. Physiol. Psychol, 70 (1970) 73–78.CrossRefGoogle Scholar
  19. 19.
    Chiaraviglio, E. Effect of lesions in the septal area and olfactory bulbs on sodium chloride intake. Physiol. & Behay., 4 (1969) 693–697.CrossRefGoogle Scholar
  20. 20.
    Clark, C. V. H., and Isaacson, R. L. Effect of bilateral hippocampal ablation on DRL performance. J. Comp. Physiol. Psycho L, 59 (1965) 137–140.CrossRefGoogle Scholar
  21. 21.
    Clody, D. E., and Carlton, P. L. Behavioral effects of lesions of the medial septum in rats. J. Comp. Physiol. Psychol, 67 (1969) 344–351.CrossRefGoogle Scholar
  22. 22.
    Corman, C. D., Meyer, P. M., and Meyer, D. R. Open-field activity and exploration in rats with septal and amygdaloid lesions. Brain Res., 5 (1967) 469–476.CrossRefGoogle Scholar
  23. 23.
    Dalby, D. A. Effect of septal lesions on the acquisition of two types of active-avoidance behavior in rats. J. Comp. Physiol. Psychol, 73 (1970) 278–283.CrossRefGoogle Scholar
  24. 24.
    Dallard, T. Response and stimulus perseveration in rats with septal and dorsal hippocampal lesions. J. Comp. Physiol. Psychol., 71 (1970) 114–118.CrossRefGoogle Scholar
  25. 25.
    Donovick, P. J. Effects of localized septal lesions on hippocampal EEG activity and behavior in rats. J. Comp. Physiol. Psychol., 66 (1968) 569–578.CrossRefGoogle Scholar
  26. 26.
    Donovick, P. J., and Wakeman, K. A. Open-field luminance and septal hyper-emotionality. Anim. Behay., 17 (1969) 186–190.CrossRefGoogle Scholar
  27. 27.
    Donovick, P. J., Burright, R. G., and Gittelson, P. L. The effects of septal lesions on saccharine choice as a function of water deprivation. Physiol. & Behay., 3 (1968) 677–681.CrossRefGoogle Scholar
  28. 28.
    Donovick, P. J., Burright, R. G. and Gittelson, P. L. Body-weight and food and water consumption in septal lesioned and operated control rats. Psychol. Rep., 25 (1969) 303–310.CrossRefGoogle Scholar
  29. 29.
    Donovick, P. J., Burright, R. G., and Zuromski, E. Localization of quinine aversion within the septum, habenula and interpeduncular nucleus of the rat. J. Comp. Physiol. Psychol, 71 (1970) 376–383.CrossRefGoogle Scholar
  30. 30.
    Douglas, R. J., and Raphelson, A. C. Septal lesions and activity. J. Comp. Physiol. Psychol., 62 (1966) 465–467.CrossRefGoogle Scholar
  31. 31.
    Eichelman, Burr S., Jr. Effect of subcortical lesions on shock-induced aggression in the rat. J. _Comp. Physiol. Psychol., 74 (1971) 331–339.CrossRefGoogle Scholar
  32. 32.
    Ellen, P., and Powell, E. W. Temporal discrimination in rats with rhinencephalic lesions. Exp. Neurol., 6 (1962) 538–547.CrossRefGoogle Scholar
  33. 33.
    Ellen, P., Wilson, A., and Powell, E. Septal inhibition and timing behavior in the rat. Exp. Neurol., 10 (1964) 120–132.CrossRefGoogle Scholar
  34. 34.
    Fisher, A. E., and Coury, J. Cholinergic tracing of a central neural circuit underlying the thirst drive. Science, 138 (1962) 691–693.CrossRefGoogle Scholar
  35. 35.
    Flaherty, C. F., and Hamilton, L. W. Responsitivity to decreasing sucrose concentrations following septal lesions in the rat. Physiol. & Behay., 6 (1971) 431–437.CrossRefGoogle Scholar
  36. 36.
    Fox, C. A. Certain basal telencephalic centers in the cat. J. Comp. Neurol., 72 (1940) 1–62.CrossRefGoogle Scholar
  37. 37.
    Fox, S. S., Kimble, D. P., and Lickey, M. E. Comparison of caudate nucleus and septal-area lesions on two types of avoidance behavior. J. Comp. Physiol. Psychol, 58 (1964) 380–386.CrossRefGoogle Scholar
  38. 38.
    Fried, P. A. Effect of pre-and post-operative treatment in septal lesioned rats. Canad. Psychol„ 10 (1969) 203.Google Scholar
  39. 39.
    Fried, P. A. Effects of septal lesions on conflict resolution in rats. J. Comp. Physiol. Psychol., 69 (1969) 375–380.CrossRefGoogle Scholar
  40. 40.
    Fried, P. A. Pre-and post-operative approach training and conflict resolution by septal and hippocampal lesioned rats. Physiol. & Behay., 5 (1970) 975.CrossRefGoogle Scholar
  41. 41.
    Gittelson, P. L., and Donovick, P. J. The effects of septal lesions on the learning and reversal of a kinesthetic discrimination. Psychon. Sci., 13 (1968) 137–138.Google Scholar
  42. 42.
    Gotsick, J. Factors affecting spontaneous activity in rats with limbic system lesions. Physiol. & Behay., 4 (1969) 587–593.CrossRefGoogle Scholar
  43. 43.
    Grace, J. E. Central nervous system lesions and saline intake in the rat. Physiol. & Behay., 3 (1968) 387–393.CrossRefGoogle Scholar
  44. 44.
    Grant, L. D., Coscina, D. V., Grossman, S. P., and Freedman, D. X. Muricide after serotonin depleting lesions of midbrain raphé nuclei. Pharmac. Biochem. & Behay., 1 (1973) 77–80.CrossRefGoogle Scholar
  45. 45.
    Grossman, S. P. Eating or drinking elicited by direct adrenergic or chlinergic stimulation of hypothalamus. Science, 132 (1960) 301–302.CrossRefGoogle Scholar
  46. 46.
    Grossman, S. P. Effects of chemical stimulation of the septal area on motivation. J. Comp. Physiol. Psychol, 58 (1964) 194–200.CrossRefGoogle Scholar
  47. 47.
    Grossman, S. P. The physiological basis of specific and non-specific motivational processes. In The Nebraska Symposium on Motivation. W. J. Arnold, Ed. Lincoln, Neb.: University of Nebraska Press, 1969, pp. 1–46.Google Scholar
  48. 48.
    Grossman, S. P. Avoidance behavior and aggression in rats with transections of the lateral connections of the medial or lateral hypothalamus. Physiol. & Behay., 5 (1970) 1103–1108.CrossRefGoogle Scholar
  49. 49.
    Grossman, S. P. Modification of emotional behavior by intra-cranial administration of chemicals. In Physiological Correlates of Emotion. P. Black, Ed., New York: Academic Press, 1970, pp. 73–93.Google Scholar
  50. 50.
    Grossman, S. P. Cholinergic synapses in the limbic system and behavioral inhibition. Neurotransmitters. Res. Publ., Assn. Res. Nerv. Ment. Dis., 50 (1972) 315–326.Google Scholar
  51. 51.
    Grossman, S. P., and Grossman, L. Surgical interruption of the anterior or posterior connections of the hypothalamus: Effects on aggressive and avoidance behavior. Physiol. & Behay., 5 (1970) 1313–1317.CrossRefGoogle Scholar
  52. 52.
    Hamilton, L. W. Active avoidance impairment following septal lesions in cats. J. Comp. Physiol. Psychol., 69 (1969) 420–431.CrossRefGoogle Scholar
  53. 53.
    Hamilton, L. W. Behavioral effects of unilateral and bilateral septal lesions in rats. Physiol. & Behay., 5 (1970) 855–859.CrossRefGoogle Scholar
  54. 54.
    Hamilton, L. W., and Grossman, S. P. Behavioral changes following disruption of central cholinergic pathways. J. Comp. Physiol. Psychol, 69 (1969) 76–82.CrossRefGoogle Scholar
  55. 55.
    Hamilton, L. W., Kelsey, J. E., and Grossman, S. P. Variations in behavioral inhibition following different septal lesions in rats. J. Comp. Physiol. Psychol, 70 (1970) 79–86.CrossRefGoogle Scholar
  56. 56.
    Hamilton, L. W., McCleary, R. A., and Grossman, S. P. Behavioral effects of cholinergic septal blockade in the cat. J. Comp. Physiol. Psychol., 66 (1968) 563–568.CrossRefGoogle Scholar
  57. 57.
    Harrison, J. M., and Lyon, M. The role of septal nuclei and components of the fornix in the behavior of the rat. J. Comp. Neurol., 108 (1957) 121–137.CrossRefGoogle Scholar
  58. 58.
    Harvey, J. A., and Hunt, H. F. Effect of septal lesions on thirst in the rat as indicated by water consumtpion and operant responding for water reward. J. Comp. Physiol. Psychol., 59 (1965) 49–56.CrossRefGoogle Scholar
  59. 59.
    Harvey, J. A., and Lints, C. E. Lesions in the medial forebrain bundle: Relationship between pain sensitivity and telencephalic content of serotonin. J. Comp. Physiol. Psychol., 74 (1971) 28–36.CrossRefGoogle Scholar
  60. 60.
    Harvey, J. A., Lints, C. E., Jacobson, L. W., and Hunt, H. F. Effects of lesions in the septal area on conditioned fear and discriminated instrumental punishment in the albino rat. J. Comp. Physiol. Psychol., 59 (1965) 37–48.CrossRefGoogle Scholar
  61. 61.
    Heller, A., and Moore, R. Y. Control of brain serotonin and norepinephrine by specific neural systems. Adv. Pharmac., 64 (1968) 191–206.CrossRefGoogle Scholar
  62. 62.
    Hothersall, D., Johnson, D. A., and Collen, A. Fixed-ratio responding following septal lesions in the rat. J. Comp. Physiol. Psychol, 73 (1970) 470–476.CrossRefGoogle Scholar
  63. 63.
    Isaacson, R. L., Douglas, R. J., and Moore, R. Y. The effect of radical hippocampal ablation on acquisition of avoidance responses. J. Comp. Physiol. Psychol, 54 (1961) 625–628.CrossRefGoogle Scholar
  64. 64.
    Kaada, B. R. Somatomotor, automatic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog: A study of responses from the limbic, subcallosal, orbital insula, pyriform and temporal cortex, hippocampus, fornix and amygdala. Acta Physiol. Scand., 24 (1951) (Supplement 83), 1–285.Google Scholar
  65. 65.
    Kaada, B. R., Rasmussen, E. W., and Kveim, O. Impaired acquisition of passive avoidance behavioral by subcallosal, septal, hypothalamic and insular lesions in the rat. J. Comp. Physiol. Psychol., 55 (1962) 661–670.CrossRefGoogle Scholar
  66. 66.
    Karli, P. Septum, hypothalamus postérieur et agressivité interspécifique rat-souris. J. Physiol., 52 (1960) 135–136.Google Scholar
  67. 67.
    Karli, P., Vergnes, M., and Didergeorges, F. Rat-mouse inter-specific aggressive behaviour and its manipulation by brain ablation and by brain stimulation. In Aggressive Behaviour. S. Garattini and E. B. Siggs, Eds., New York: John Wiley, 1969.Google Scholar
  68. 68.
    Kelsey, J. The rleations between septal lesions, scopolamine, the pituitary-adrenocortical system, and behavior. Unpublished Ph.D. Dissertation, University of Chicago, 1971.Google Scholar
  69. 69.
    Kelsey, J. E., and Grossman, S. P. Cholinergic blockade and lesions in the ventromedial septum of the rat. Physiol. & Behay. 4 (1969) 837–845.CrossRefGoogle Scholar
  70. 70.
    Kelsey, J. E., and Grossman, S. P. Nonperseverative disruption of behavioral inhibition following septal lesions in rats. J. Comp. Physiol. Psychol., 75 (1971) 302–311.CrossRefGoogle Scholar
  71. 71.
    Kemble, E. D., Levine, M. S., Gregoire, K., Koepp, K., and Thomas, T. T. Reactivity to saccharin and quinine solutions following amygdaloid or septal lesions in rats. Behay. Biol., 7 (1972) 503–512.CrossRefGoogle Scholar
  72. 72.
    Kenyon, J., and Krieckhaus, E. E. Decrements in one-way avoidance learning following septal lesions in rats. Psychon. Sci., 3 (1965) 113–114.Google Scholar
  73. 73.
    Kimble, D. P., and Kimble, P. J. Hippocampectomy and response preseveration in the rat. J. Comp. Physiol. Psychol, 3 (1965) 474–476.CrossRefGoogle Scholar
  74. 74.
    Kimura, D. Effects of selective hippocampal damage on avoidance behavior in the rat. Can. J. Psychol., 12 (1958) 213–218.Google Scholar
  75. 75.
    King, F. A. Effects of septal and amygdaloid lesions on emotional behavior and conditioned avoidance responses in the rat. J. Nerv. Ment. Dis., 126 (1958) 57–63.CrossRefGoogle Scholar
  76. 76.
    Krieckhaus, K., Simmons, H., Thomas, G., and Kenyon, J. Septal lesions enhance shock avoidance behavior in rats. Exp. Neurol., 9 (1964) 107–113.CrossRefGoogle Scholar
  77. 77.
    Leaf, R. C., and Muller, S. A. Central cholinergic response inhibition during massed free-operant and discrete-trial avoidance acquisition. In Proceedings of the Fifth Internationale Congress of the Collegium Internationale NueroPsycho-Pharmacologicum. H. Brill, J. 0. Cole, P. Deniker, H. Hippicus, and P. B. Bradley, Eds., Amsterdam: Exerpta Medica, 1966.Google Scholar
  78. 78.
    Lints, C. E. Changes in sensitivity to electric shock following central nervous system lesions in the rat. Unpublished Ph.D. dissertation, University of Chicago, 1965.Google Scholar
  79. 79.
    Lints, C. E., and Harvey, J. A. Altered sensitivity to footshcok and decreased brain content of serotonin following brain lesions in the rat. J. Comp. Physiol. Psychol, 67 (1969) 23–31.CrossRefGoogle Scholar
  80. 80.
    Liss, P. The role of the hippocampus and septum in response inhibition. Unpublished Ph.D. dissertation, McGill University, 1965.Google Scholar
  81. 81.
    Liss, P. Avoidance and freezing behavior following damage to the hippocampus or fornix. J. Comp. Physiol. Psychol., 66 (1968) 193–197.CrossRefGoogle Scholar
  82. 82.
    Lorens, S. A. Activity and consummatory and avoidance behavior following lesions in the nucleus accumbens septi. Proc. 78th Annual APA Convention, Washington, D.C., 1970, pp. 209–210.Google Scholar
  83. 83.
    Lorens, S. A., and Kondo, C. Y. Effects of septal lesions on food and water intake and operant responding for food. Physiol. & Behay., 4 (1969) 729–732.CrossRefGoogle Scholar
  84. 84.
    Lorens, S. A., Sorenson, J. P., and Harvey, J. A. Lesions in the nuclei accumbens septi of the rat: Behavioral and neurochemical effects. J. Comp. Physiol. Psychol., 73 (1970) 284–290.CrossRefGoogle Scholar
  85. 85.
    Lubar, J. F. Effect of medial cortical lesions on the avoidance behavior of the cat. J. Comp. Physiol. Psychol., 58 (1964) 38–46.CrossRefGoogle Scholar
  86. 86.
    Lubar, J. F., Boyce, B. A., and Schaefer, C. F. Etiology of polydipsia and polyuria in rats with septal lesions. Physiol. & Behay., 3 (1968) 289–292.CrossRefGoogle Scholar
  87. 87.
    Lubar, J. F., Schaefer, C. F., and Wells, D. G. The role of the septal area in the regulation of water intake and associated motivational behavior. Ann. N. Y. Acad. Sci., 157 (1969) 875–893.CrossRefGoogle Scholar
  88. 88.
    MacDougall, J. M., Van Hoesen, G. W., and Mitchell, J. C. Anatomical organization of septal projections in maintenance of DRL behavior in rats. J. comp. physiol. Psychol., 68 (1969) 568–575.Google Scholar
  89. 89.
    MacLean, P. D. The hypothalamus and emotional behavior. In The Hypothalamus. W. Haymaker, E. Anderson, and W. J. H. Nauta, Eds., Springfield, Ill.: Charles C. Thomas, 1969, pp. 659–678.Google Scholar
  90. 90.
    Matalka, E. S., and Bunnell, B. N. Septal ablation and CAR acquisition in the golden hamster. Psychon. Sci., 12 (1968) 27–28.Google Scholar
  91. 91.
    McCleary, R. A. Response specificity in the behavioral effects of limbic system lesions in the cat. J. Comp. Physiol. Psychol., 54 (1961) 605–613.CrossRefGoogle Scholar
  92. 92.
    McCleary, R. A. Response-modulating functions of the limbic system: Initiation and suppression. In Progress in Physiological Psychology, Vol. I. E. Stellar and J. M. Sprague, Eds., New York: Academic Press, 1966, pp. 209–272.Google Scholar
  93. 93.
    McGowan, B. K., Garcia, J., Ervin, F. R., and Schwartz, J. Effects of septal lesions on bait-shyness in the rat. Physiol. & Behay., 4 (1969) 907–911.CrossRefGoogle Scholar
  94. 94.
    McMullen, M., and Slotnick, B. M. Fighting behavior in mice following septal forebrain lesions. Amer. Zool., 7 (1967) 793 (Abstract).Google Scholar
  95. 95.
    McNew, J. J., and Thompson, R. Role of the limbic system in active and passive avoidance conditioning in the rat. J. Comp. Physiol. Psychol., 61 (1966) 173–180.CrossRefGoogle Scholar
  96. 96.
    Miczek, K. A., and Grossman, S. P. Effects of septal lesions on inter-and intra-species aggression in rats. J. Comp. Physiol. Psychol., 79 (1972) 37–45.CrossRefGoogle Scholar
  97. 97.
    Miczek, K. A., Kelsey, J. E., and Grossman, S. P. Time course of effects of septal lesions on avoidance, response suppression, and reactivity to shock. J. Comp. Physiol. Psychol., 79 (1972) 318–327.CrossRefGoogle Scholar
  98. 97.
    Miczek, K. A., Kelsey, J. E., and Grossman, S. P. Time course of effects of septal lesions on avoidance, response suppression, and reactivity to shock. J. Comp. Physiol. Psychol., 79 (1972) 318–327.CrossRefGoogle Scholar
  99. 99.
    Middaugh, L. D., and Lubar, J. F. Interaction of septal lesions and experience on the suppression of punished responses. Physiol. & Behay., 5 (1970) 233–238.CrossRefGoogle Scholar
  100. 100.
    Moore, R. Y. Effects of some rhinencephalic lesions on retention of conditioned avoidance behavior in cats. J. Comp. Physiol. Psychol., 57 (1964) 65–71.CrossRefGoogle Scholar
  101. 101.
    Morgan, J. M., and Mitchell, J. C. Septal lesions enhance delay of responding on a free operant avoidance schedule. Psychon. Sci., 16 (1969) 10–11.Google Scholar
  102. 102.
    Morgane, P. J. Medial forebrain bundle and “feeding centers” of the hypothalamus. J. Comp. Neurol., 117 (1961) 1–25.CrossRefGoogle Scholar
  103. 103.
    Negro-Vilar, A., Gentil, C. G., and Covian, M. R. Alterations in sodium chloride and water intake after septal lesions in the rat. Physiol. & Behay., 2 (1967) 167–170.CrossRefGoogle Scholar
  104. 104.
    Neill, D. B., Ross, J. F., and Grossman, S. P. Comparison of the effects of frontal, striatal, and septal lesions in paradigms thought to measure incentive motivation or behavioral inhibition. Physiol. & Behay., 13 (1974) 297–305.CrossRefGoogle Scholar
  105. 105.
    Nielson, H. C., McIver, A. H., and Boswell, R. S. Effect of septal lesions on learning, emotionality, activity and exploratory behavior in rats. Exp. Neurol., 11 (1965) 147–157.CrossRefGoogle Scholar
  106. 106.
    Olton, D. S., and Isaacson, R. L. Hippocampal lesions and active avoidance. Physiol. & Behay., 3 (1968) 719–724.CrossRefGoogle Scholar
  107. 107.
    Papez, J. W. A proposed mechanism of emotion. Arch. neurol. Psychiat. (Chicago), 38 (1937) 725–743.CrossRefGoogle Scholar
  108. 108.
    Pellegrino, L. Amygdaloid lesions and behavioral inhibition in the rat. J. Comp. Physiol. Psychol, 65 (1968) 483–491.CrossRefGoogle Scholar
  109. 109.
    Peretz, E. Extinction of a food-reinforced response in hippo-campectomized cats. J. Comp. Physiol. Psychol., 60 (1965) 182–185.CrossRefGoogle Scholar
  110. 110.
    Porter, R. H., and Garreffa, L. F. Septal lesions affect agonistic behavior in bobwhite quail (Colinus virginianus). Comm. Behay. Biol., 5 (1970) 19–22.Google Scholar
  111. 111.
    Porter, R. W., Conrad, D. B., and Brady, J. V. Some neural and behavioral correlates of electrical self-stimulation of the limbic system. J. Exp. Anal. Behay., 2 (1959) 43–55.CrossRefGoogle Scholar
  112. 112.
    Pubols, L. M. Changes in food motivated behavior of rats as a function of septal and amygdaloid lesions. Exp. Neurol., 15 (1966) 240–254.CrossRefGoogle Scholar
  113. 113.
    Raisman, G. The connexions of the septum. Brain, 89 (1966) 317–348.CrossRefGoogle Scholar
  114. 114.
    Rich, I., and Thompson, R. Role of the hippocampo-septal system, thalamus, and hipothalamus in avoidance conditioning. J. Comp. Physiol. Psychol., 59 (1965) 66–72.CrossRefGoogle Scholar
  115. 115.
    Ross, J. F. A neuroanatomical analysis of the septal lesion syndrome. Unpublished Ph.D. dissertation, University of Chicago, 1974.Google Scholar
  116. 115.
    Ross, J. F. A neuroanatomical analysis of the septal lesion syndrome. Unpublished Ph.D. dissertation, University of Chicago, 1974.Google Scholar
  117. 115.
    Ross, J. F. A neuroanatomical analysis of the septal lesion syndrome. Unpublished Ph.D. dissertation, University of Chicago, 1974.Google Scholar
  118. 118.
    Schwartzbaum, J. S., and Donovick, P. J. Discrimination reversal and spatial alternation associated with septal and caudate dysfunction in rats. J. Comp. Physiol. Psychol., 65 (1968) 83–92.CrossRefGoogle Scholar
  119. 119.
    Schwartzbaum, J. S., and Gay, P. E. Interacting behavioralGoogle Scholar
  120. effects of septal and amygdaloid lesions in the rat. J. Comp. Physiol. Psychol., 61 (1966) 59–65.CrossRefGoogle Scholar
  121. 120.
    Schwartzbaum, J. S., and Spieth, T. M. Analysis of the response inhibition concept of septal functions in “passive-avoidance” behavior. Psychon. Sci., 1 (1964) 145–146.Google Scholar
  122. 121.
    Schwartzbaum, J. S., Kellicutt, M. H., Spieth, T. M., and Thompson, J. B. Effects of septal lesions in rats on response inhibition associated with food-reinforced behavior. J. Comp. Physiol. Psychol., 58 (1964) 217–224.CrossRefGoogle Scholar
  123. 122.
    Schwartzbaum, J. S., Green, R. H., Beatty, W. W., and Thompson, J. B. Acquisition of avoidance behavior following septal lesions in the rat. J. Comp. Physiol. Psychol., 63 (1967) 95–104.CrossRefGoogle Scholar
  124. 123.
    Sclafani, A., and Grossman, S. P. Hyperphagia produced by knife cuts between the medial and lateral hypothalamus in the rat. Physiol. and Behay., 4 (1969) 533–538.CrossRefGoogle Scholar
  125. 124.
    Sclafani, A., and Grossman, S. P. Reactivity of hyperphagic and normal rats to quinine and electric shock. J. Comp. Physiol. Psychol., 74 (1971) 157–166.CrossRefGoogle Scholar
  126. 125.
    Seggie, J. Effect of somatosensory stimulation on affective behavior of septal rats. J. Comp. Physiol. Psychol., 66 (1968) 820–822.CrossRefGoogle Scholar
  127. 126.
    Sheard, M. H. The effect of p-chlorophenylalanine on behavior in rats: Relation to brain serotonin and 5-hydroxyindolacetic acid. Brain Res., 15 (1969) 524–528.CrossRefGoogle Scholar
  128. 127.
    Singh, D., and Meyer, D. R. Eating and drinking by rats with lesions of the septum and the ventromedial hypothalamus. J. Comp. Physiol. Psychol., 65 (1968) 163–166.CrossRefGoogle Scholar
  129. 128.
    Sodetz, F. J. Septal ablation and free-operant avoidance behavior in the rat. Physiol. & Behay., 5 (1970) 773–778.CrossRefGoogle Scholar
  130. 129.
    Sodetz, F. J., Matalka, E. S., & Bunnell, B. N. Septal ablation and affective behavior in the golden hamster. Psychon. Sci., 7 (1967) 189–190.Google Scholar
  131. 130.
    Sorenson, J. P., and Harvey, J. A. Decreased brain acetylcholine after septal lesions in rats: Correlation with thirst. Physiol. & Behay., 6 (1971) 723–725.CrossRefGoogle Scholar
  132. 131.
    Stark, P., and Henderson, J. K. Increased reactivity in rats caused by septal lesions. Int. J. Neuropharm., 5 (1966) 379–384.Google Scholar
  133. 132.
    Stein, L. Chemistry of purposive behavior. In Reinforcement and Behavior. J. T. Tapp, Ed., New York: Academic Press, 1969.Google Scholar
  134. 133.
    Thomas, G. J., Moore, R.Y., Harvey, J. A., and Hunt, H. F. Relations between the behavioral syndrome produced by lesions in the septal region of the forebrain and maze learning of the rat. J. Comp. Physiol. Psychol., 52 (1959) 527–532.CrossRefGoogle Scholar
  135. 134.
    Thompson, R., and Langer, S. Deficits in position reversal learning following lesions of the limbic system. J. Comp. Physiol. Psychol., 56 (1963) 987–995.CrossRefGoogle Scholar
  136. 135.
    Trafton, C. L. Effects of lesions in the septal area and cingulate cortical areas on conditioned suppression of activity and avoidance behavior in rats. J. Comp. Physiol. Psychol., 63 (1967) 191–197.CrossRefGoogle Scholar
  137. 136.
    Turner, B. H. Neural structures involved in the rage syndrome of the rat. J. Comp. Physiol. Psychol, 71 (1970) 103–113.CrossRefGoogle Scholar
  138. 137.
    Ursin, H. Effect of amygdaloid lesions on avoidance behavior and visual discrimination in cats. Exp. Neurol., 11 (1965) 298–317.CrossRefGoogle Scholar
  139. 138.
    Vanderwolf, C. H. Effect of combined medial thalamic and septal lesions on active avoidance behavior. J. Comp. Physiol. Psychol., 58 (1964) 31–37.CrossRefGoogle Scholar
  140. 139.
    Van Hoesen, G. W., MacDougall, J. M., and Mitchell, J. C. Anatomical specificity of septal projections in active and passive avoidance behavior in rats. J. Comp. Physiol. Psychol., 68 (1969) 80–89.CrossRefGoogle Scholar
  141. 140.
    Votaw, C. L. Study of septal stimulation and ablation in the macaque monkey. Neurology, 10 (1960) 202–209.CrossRefGoogle Scholar
  142. 141.
    Wilson, J. R., Mitchell, J. C., and Van Hoesen, G. W. Epithalamic and ventral tegmental contributions to avoidance behavior in rats. J. Comp. Physiol. Psychol, 78 (1972) 442–449.CrossRefGoogle Scholar
  143. 142.
    Winocur, G., and Mills, J. A. Effects of caudate lesions on avoidance behavior in rats. J. Comp. Physiol. Psychol., 68 (1969) 552–557.CrossRefGoogle Scholar
  144. 143.
    Wishart, T. B., and Morgenson, G. J. Effects of food depriva-tion on water intake in rats with septal lesions. Physiol. & Behay., 5 (1970) 1481–1486.CrossRefGoogle Scholar
  145. 144.
    Yutzey, D. A., Meyer, P. M., and Meyer, D. A. Emotionality changes following septal and neocortical ablations in rats. J. Comp. Physiol. Psychol., 58 (1964) 463–467.CrossRefGoogle Scholar
  146. 145.
    Zucker, I. Effect of lesions of the septal-limbic area on the behavior of cats. J. Comp. Physiol. Psychol., 60 (1965) 344–352.Google Scholar
  147. 146.
    Zucker, I., and McCleary, R. A. Perseveration in septal cats. Psychon. Sci., 1 (1964) 387–388.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Sebastian P. Grossman
    • 1
  1. 1.The University of ChicagoUSA

Personalised recommendations