Septum Development in Primates

  • O. J. Andy
  • H. Stephan
Part of the Advances in Behavioral Biology book series (ABBI, volume 20)


It has been commonly believed that the septum underwent a reduction in size during evolution. Previous investigators (18,19, 20) thought that the septum became a functionless atrophic cortical structure in association with a general atrophic process of the olfactory system. More recent studies, based on utilizing insectivores as a reference since they represent the forerunners of the primate, reveal that the septum actually undergoes a progressive increase rather than a decrease in size in primate development (3,4,22). Among primates it attains its greatest degree of development in the human brain (Fig. 1).


Corpus Callosum Anterior Commissure Preoptic Area Common Shrew Stria Terminalis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andy, 0. J., and Stephan, H. The nuclear configuration of the septum of Galago demidovii. J. Comp. Neur., 111 (1959) 503–545.CrossRefGoogle Scholar
  2. 2.
    Andy, 0. J., and Stephan, H. Septal nuclei in the soricidae (Insectivores), Cyto-Architectonic study. J. Comp. Neur., 117 (1961) 251–274.CrossRefGoogle Scholar
  3. 3.
    Andy, 0. J., and Stephan, J. Septal nuclei in primate phylogeny (A quantitative investigation). J. Comp. Neur., 126 (1966) 157–170.CrossRefGoogle Scholar
  4. 4.
    Andy, 0. J., and Stephan, H. The septum in the human brain. J. Comp. Neurol., 133 (1968) 383–409.CrossRefGoogle Scholar
  5. 5.
    Ariens Kappers, C. U., Huber, G. C., and Crosby, E. C. The comparative anatomy of the nervous system in vertebrates, including man. The MacMillan Company, New York, N. Y. (1936).Google Scholar
  6. 6.
    Brockhaus, H. Zur feineren Anatomie des Septum und des Striatum. J. Psych. Neur., 51 (1942) 1–56.Google Scholar
  7. 7.
    Cajal, Ramon Y. Histologie du systeme nerveus. Teil 2 A. Maloine, Paris (1911).Google Scholar
  8. 8.
    Dubois, E. Uber die Abhängigkeit des Hirngewichts von der Körpergrösse bei den Säugetieren. Arch. Anthrop., 25 (1897) 1–28.Google Scholar
  9. 9.
    Fox, C. A. Certain basal telencephalic centers in the cat. J. Comp. Neur., 72 (1940) 1–62.CrossRefGoogle Scholar
  10. 10.
    Gurdjian, K. S. Olfactory connections of the albine rat, with special reference to the stria medullaris and anterior commissure. J. Comp. Neur., 38 (1925) 127–163.Google Scholar
  11. 11.
    Herrick, C. J. The morphology of the forebrain in amphibia and reptilla. J. Comp. Neur., 20 (1910) 413–547.CrossRefGoogle Scholar
  12. 12.
    Humphrey, T. The telecephalon of the bat. 1. The non-cortical nuclear masses and certain pertinent fiber connections. J. Comp. Neur., 65 (1936) 603–711.CrossRefGoogle Scholar
  13. 13.
    Jeserich, M. W. The nuclear pattern and the fiber connections of certain non-cortical areas of the telencephalon of the mink (Mustela vison). J. Comp. Neur., 83 (1945) 173–211.CrossRefGoogle Scholar
  14. 14.
    Johnson, T. N. Studies on the brain of the guinea pig. 1. The nuclear pattern of certain non-cortical areas of the telencephalon of the mink (Mustela vison). J. Comp. Neur., 83 (1957) 173–211.Google Scholar
  15. 15.
    Lauer, E. W. The nuclear pattern and fiber connections of certain basal telencephalic centers of the macaque. J. Comp. Neur., 82 (1945) 215–254.CrossRefGoogle Scholar
  16. 16.
    Lauer, E. W. Certain olfactory centers of the forebrain of the giant panda (Ailuropoda melanoleuca). J. Comp. Neur., 90 (1949) 213–242.CrossRefGoogle Scholar
  17. 17.
    Loo, Y. T. The forebrain of the opossum (didelphis virginiana), Part II. J. Comp. Neur., 52 (1931) 1–148.CrossRefGoogle Scholar
  18. 18.
    Rose, M. Tiber das histogenetische Prinzip der Einteilung der Grosshirnrinde. J. Psychol. Neur.,(Lpz.) 32 (1926) 97160.–Ders., Der Allocortex bei Tier und Mensch. J. Psychol. Neur. (Lpz.) 34 (1927) 1–111.Google Scholar
  19. 19.
    Shimazono, J. Das septum pellucidum des menschen. Arch. Ant. u. Physiol. Anat. Abt., (1921) 55–61.Google Scholar
  20. 20.
    Smith. G. E. Morphology of the true limbic lobe, corpus callosum, septum pellucidum and fornix. J. Anat. (London), 30 (1895a) 157–167 and 185–205.Google Scholar
  21. 10.
    Ders., The connection between the olfactory bulb and the hippocampus. Anat. Anz.Google Scholar
  22. 21.
    Snell, 0. Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiatr., Berlin 23 (1892) 436–446.Google Scholar
  23. 22.
    Stephan, J., and Andy, O. J. The septum (A comparative study on its size in insectivores and primates). J. Hirnforsch., 5 (1962) 229–244.Google Scholar
  24. 23.
    Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. A. wiss. Zool., l64 (1960) 143–172.Google Scholar
  25. 24.
    Stephan, H., and Andy, 0. J. Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. V. Die quantitative Zusammensetzung der Oberflächen des Allocortex. Acta Anat. (Basel), 44 (1961) 12–59.Google Scholar
  26. 25.
    Stephan, H., and Andy, 0. J. Cytoarchitectonics of the septal muclei in old world monkeys (Cerecopithecus and Colobus). J. Hirnforsch., 7 (1964) 1–23.Google Scholar
  27. 26.
    Young, M. W. The nuclear pattern and fiber connections of the rabbit (Lepus coniculus). J. Comp. Neur.,65 (1936) 295401.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • O. J. Andy
    • 1
    • 2
  • H. Stephan
    • 1
    • 2
  1. 1.University of Mississippi Medical CenterJacksonUSA
  2. 2.Mississippi and the Max Planck Institute for Brain ResearchFrankfurtGermany

Personalised recommendations