The Role of Electrotonic Synapses in the Control of Behaviour

  • M. E. Spira
Part of the Advances in Behavioral Biology book series (ABBI, volume 15)


Chemical synapses are considered to be the tool whereby information is transmitted in a manner which allows integration and fine processing. The graded excitatory and inhibitory actions of chemical synapses, changes in their transmission potency as a result of their activity (facilitation and fatigue), temporal summation and unidirectional conduction are well documented. These properties are considered the major processes for handling and integration of information in neuronal networks. Therefore, when we study information processing or when we design neuronal models to fit some known behaviour, we search for or introduce into the model system chemical synapses or their operational properties.


Coupling Coefficient Behaviour Control Temporal Summation Chemical Synapse Electrical Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ASADA, Y. & BENNETT, M.V.L. J. Cell. Biol. 49:159, 1971.PubMedCrossRefGoogle Scholar
  2. 2.
    AUERBACH, A.A. & BENNETT, M.V.L. J. Gen. Physiol. 53:211, 1969.PubMedCrossRefGoogle Scholar
  3. 3.
    BENNETT, M.V.L. Ann. N.Y. Acad. Sci. 137:509, 1966.PubMedCrossRefGoogle Scholar
  4. 4.
    BENNETT, M.V.L. Electrical versus chemical neurotransmission. In: Research Publications of the A.R.N.M.D., Vol. 50, p. 58, “Neurotransmitters”, Williams & Wilkins, Baltimore, 1972a.Google Scholar
  5. 5.
    BENNETT, M.V.L. A comparison of electrically and chemically mediated transmission. In: Structure and Function of Synapses (Eds. G.D. PAPPAS and D.P. PURPURA), p. 221. Raven Press, New York, 1972b.Google Scholar
  6. 6.
    BENNETT, M.V.L. Fed. Proc. 32:65, 1973.PubMedGoogle Scholar
  7. 7.
    BENNETT, M.V.L. Flexibility and rigidity in electrotonically coupled systems. In: Synaptic Transmission and Neuronal Interaction (Ed. M.V.L. BENNETT), p. 153, Raven Press, New York, 1974.Google Scholar
  8. 8.
    dowling, J.E. & BOYCOTT, B.B. Proc. Roy. Soc. Lon. Ser. B. 166:80, 1966.CrossRefGoogle Scholar
  9. 9.
    FABER, D.S. & KORN, H. Science 179:577, 1973.PubMedCrossRefGoogle Scholar
  10. 10.
    FURSHPAN, J. & POTTER, D.D. J. Physiol. 145:289, 1958.Google Scholar
  11. 11.
    FURUKAWA, T. & FURSHPAN, E.J. J. Neurophysiol. 26:140, 1963.PubMedGoogle Scholar
  12. 12.
    GETTING, P.A. & WILLOWS, A.O.D. Brain Research 63:424, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    HINRICHSEN, C.F.L. & LARRAMENDI, L.M.H. Brain Research 7:296, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    LEVITAN, H., TAUC, L. & SEGUNDO, J.P. J. Gen. Physiol. 55:484, 1970.PubMedCrossRefGoogle Scholar
  15. 15.
    LLINAS, R., BAKER, R. & SOTELO, C. J. Neurophysiol. 37:560, 1974.PubMedGoogle Scholar
  16. 16.
    MURRAY, M.J. The biology of a carnivorous mollusc: anatomical, behavioral and electrophysiological observations on Navanax inermis. Ph.D. Dissertation, Univ. of Calif., Berkeley, 1971.Google Scholar
  17. 17.
    PAINE, R.T. Veliger 6:1, 1963.Google Scholar
  18. 18.
    PAPPAS, G.D. & WAXMAN, S. In: Structure and Function of Synapses, (Ed. G.D. Pappas and D.P. Purpura), Raven Press, New York, 1972.Google Scholar
  19. 19.
    PINCHING, A.J. & POWELL, T.P.S. J. Cell. Sci. 9:347, 1971.PubMedGoogle Scholar
  20. 20.
    ROSE, B. & LOEWENSTEIN, B. J. Membrane Biol. 50:20, 1971.CrossRefGoogle Scholar
  21. 21.
    SLOPER, J.J. Brain Research 44:641, 1972.PubMedCrossRefGoogle Scholar
  22. 22.
    SPIRA, M.E. & BENNETT, M.V.L. Brain Research 37:294, 1972.PubMedCrossRefGoogle Scholar
  23. 23.
    SOCOLAR, S.J. & POLITOFF, A.L. Science 172:492, 1971.PubMedCrossRefGoogle Scholar
  24. 24.
    SOTELO, C. & PALAY, S.L. Brain Research 18:93, 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    SOTELO, C. & TAXI, J. Brain Research 17:137, 1970.PubMedCrossRefGoogle Scholar
  26. 26.
    SOTELO, C. & LLINAS, R. J. Cell Biol. 53:271, 1972.PubMedCrossRefGoogle Scholar
  27. 27.
    SOTELO, C., LLINAS, R. & BAKER, R. J. Neurophysiol. 37:541, 1974.PubMedGoogle Scholar
  28. 28.
    WATANABE, A. & GRUNDFEST, H. J. Gen. Physiol. 45:267, 1961.PubMedCrossRefGoogle Scholar
  29. 29.
    WOOLLACOTT, M.H. Neuronal correlates of the prey-capture response of Navanax inermis. Ph.D. Dissertation, Univ. of So. Calif., Los Angeles, 1972.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • M. E. Spira
    • 1
  1. 1.Institute of Life SciencesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations