Advertisement

Developmental Plasticity in the Cat’s Visual Cortex

  • C. Blakemore
Part of the Advances in Behavioral Biology book series (ABBI, volume 15)

Abstract

In many species, the processing of visual information reaches a high level of complexity right in the retina itself. In rabbits (Levick, 1967), pigeons (Maturana and Frenk, 1963) and frogs (Lettvin, Maturana, McCulloch and Pitts, 1959), for example, retinal ganglion cells often demonstrate remarkable stimulus specificity. Within its receptive field (the region of receptors from which it receives information) each cell may require a quite specific visual stimulus to coax it into responding. Ganglion cells in these species sometimes require an edge at a particular orientation, an object moving in a particular direction or at a particular velocity, or even the complete absence of any pattern in the field, in order to make them respond.

Keywords

Visual Cortex Receptive Field Retinal Ganglion Cell Cortical Cell Visual Experience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BARLOW, H.B., BLAKEMORE, C. & PETTIGREW, J.D. J.Physiol.193:327, 1967.PubMedGoogle Scholar
  2. 2.
    BARLOW, H.B. & PETTIGREW, J.D. J. Physiol.218:98, 1971.Google Scholar
  3. 3.
    BLAKEMORE, C. In: The Neurosciences: Third Study Program. F.O. Schmitt and F.G. Worden, editors. Cambridge, Mass. MIT Press, p. 105 (1974).Google Scholar
  4. 4.
    BLAKEMORE, C. & COOPER, G. Nature225:477, 1970.CrossRefGoogle Scholar
  5. 5.
    BLAKEMORE, C. & MITCHELL, D.E. Nature241:467, 1973.PubMedCrossRefGoogle Scholar
  6. 6.
    BLAKEMORE, C. & VAN SLUYTERS, R.C.J.Physiol.237:195, 1974.PubMedGoogle Scholar
  7. 7.
    HIRSCH, H.V.B. & SPINELLI, D.N. Exp. Brain Res.12:509, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    HUBEL, D.H. & WIESEL, T.N. J. Physiol.160:106, 1962.PubMedGoogle Scholar
  9. 9.
    HUBEL, D.H. & WIESEL, T.N. J. Neurophysiol.26:994, 1963.PubMedGoogle Scholar
  10. 10.
    HUBEL, D.H. & WIESEL, T.N. J. Neurophysiol.28:1041, 1965.PubMedGoogle Scholar
  11. 11.
    HUBEL, D.H. & WIESEL, T.N.J. Physiol.195:215, 1968.PubMedGoogle Scholar
  12. 12.
    HUBEL, D.H. & WIESEL, T.N. Nature225:41, 1970a.PubMedCrossRefGoogle Scholar
  13. 13.
    HUBEL, D.H. & WIESEL, T.N. J. Physiol.206:419, 1970b.PubMedGoogle Scholar
  14. 14.
    JOSHUA, D.E. & BISHOP, P.O. Exp. Brain Res.10:389, 1970.PubMedCrossRefGoogle Scholar
  15. 15.
    LETTVIN, J.Y., MATURANA, H.R., MCCULLOCH, W.S. & PITTS, W.H. Proc. Inst. Radio Engr.47:1940, 1959.Google Scholar
  16. 16.
    LEVICK, W.R. J. Physiol.188:285, 1967.PubMedGoogle Scholar
  17. 17.
    MATURANA, H.R. & FRENK, S. Science142:977, 1963.PubMedCrossRefGoogle Scholar
  18. 18.
    MUIR, D.W. & MITCHELL, D.E. Science180:420. 1973.PubMedCrossRefGoogle Scholar
  19. 19.
    PETTIGREW, J.D. J. Physiol.237:49, 1974.PubMedGoogle Scholar
  20. 20.
    SHLAER, R. Science173:638, 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    WIESEL, T.N. & HUBEL, D.H.J.Neurophysiol. 28:1029, 1965.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • C. Blakemore
    • 1
  1. 1.Physiological LaboratoryCambridgeEngland

Personalised recommendations