Evidence for Cholinergic Transmission in the Cerebral Cortex

  • John W. Phillis
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


The postulate that acetylcholine (ACh) is a synaptic transmitter in the cerebral cortex has received support from several lines of investigation. All the components of the cholinergic metabolic system are found in the cortex. ACh is present (Macintosh, 1941; Elliott et al., 1950), being especially concentrated in the nerve ending and synaptic vesicle fractions of subcellular preparations. The highest levels of ACh in the feline cortex are found in layers II, III and IV (Sastry, 1956). Choline acetyltransferase, the enzyme which synthesizes ACh from choline and acetylcoenzyme A, and acetylcholinesterase (AChE), the enzyme which hydrolyzes ACh, are both present in the cortex (Hebb and Silver, 1956; Burgen and Chipman, 1951).


Cerebral Cortex Cerebellar Cortex Septal Lesion Cholinergic Transmission Repetitive Firing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bjegovic, M., Geber, J., and Randic, M., 1969, Effect of tetrodotoxin on the spontaneous release of acetylcholine from the cerebral cortex, Jugoslav. Physiol. Pharmacol. Acta 5: 345.Google Scholar
  2. 2.
    Burgen, A.S.V. and Chipman, L.M., 1951, Cholinesterase and Succinic dehydrogenase in the central nervous system of the dog, J. Physiol. (Lond.) 114: 296.Google Scholar
  3. 3.
    Burt, A.M., 1971, The histochemical localization of choline acetyltransferase, Progr. Brain Res. 34: 327.CrossRefGoogle Scholar
  4. 4.
    Chatfield, P.O. and Lord, J.T., 1955, Effects of atropine, pro-stigmine and acetylcholine on evoked cortical potentials, Electroen. Neurophysiol. 7: 553.CrossRefGoogle Scholar
  5. 5.
    Chatfield, P.O. and Purpura, D.P., 1954, Augmentation of evoked cortical potentials by topical application of prostigmine and acetylcholine after atropinisation of cortex, Electroen. Neurophysiol. 6: 287.CrossRefGoogle Scholar
  6. 6.
    Collier, B. and Mitchell, J.F., 1966, The central release of acetylcholine during stimulation of the visual pathway, J. Physiol. 184: 239.PubMedGoogle Scholar
  7. 7.
    Collier, B. and Mitchell, J.F., 1967, The central release of acetylcholine during consciousness and after brain lesions, J. Physiol. 188: 83.PubMedGoogle Scholar
  8. 8.
    Crawford, J.M. and Curtis, D.R., 1966, Pharmacological studies on feline Betz cells, J. Physiol. (Lond.) 186: 121.Google Scholar
  9. 9.
    Dudar, J.D. and Szerb, J.C., 1969, The effect of topically applied atropine on resting and evoked cortical acetylcho-line release, J. Physiol. 203: 741.PubMedGoogle Scholar
  10. 10.
    Elliott, K.A.C., Swank, R.L. and Henderson, N., 1950, Effects of anaesthetics and convulsants on acetylcholine content of brain, Am. J. Physiol. 162: 469.PubMedGoogle Scholar
  11. 11.
    Green, J.R., Halpern, L.M. and Van Niels, S., 1970, Choline acetylase and acetylcholine esterase changes in chronic isolated cerebral cortex of cat, Life Sciences 9: 481.PubMedCrossRefGoogle Scholar
  12. 12.
    Hauser, H. and Dawson, R.M.C., 1968, The displacement of calcium ions from phospholipid monolayers by pharmacologically active and other organic bases, Biochem. J. 109: 909.PubMedGoogle Scholar
  13. 13.
    Hebb, C.O. and Silver, A., 1956, Choline acetylase in the central nervous system of man and some other mammals, J. Physiol. (Lond.) 134: 718.Google Scholar
  14. 14.
    Hemsworth, B.A. and Mitchell, J.F., 1969, The characteristics of acetylcholine release mechanisms in the auditory cortex. Br. J. Pharmac. 36: 161.Google Scholar
  15. 15.
    Ilyutchenok, R.Yu. and Gilinsky, M.A., 1969, Anticholinergic drugs and neuronal mechanisms of reticulo-cortical inter-action, Pharmac. Res. Comm. 1: 242.CrossRefGoogle Scholar
  16. 16.
    Jasper, H.H. and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep, Science 172: 601.PubMedCrossRefGoogle Scholar
  17. 17.
    Jordan, L.M. and Phillis, J.W., 1972, Acetylcholine inhibition in the intact and chronically isolated cerebral cortex. Br. J. Pharmac. 45: 584.Google Scholar
  18. 18.
    Klee, M.R., Faber, D.S. and Heiss, W.D., 1973, Strychnine and pentylenetetrazol-induced changes of excitability in Aplysia neurons, Science 179: 1133.PubMedCrossRefGoogle Scholar
  19. 19.
    Kobayashi, H. and Libet, B., 1968, Generation of slow postsynaptic potentials without increases in ionic conductance, Proc. Natn. Acad. Sci. U.S.A. 60: 1304.CrossRefGoogle Scholar
  20. 20.
    Krip, G. and Vazquez, A.J., 1971, Effects of diphenylhydantoin and cholinergic agents on the neuronally isolated cerebral cortex, Electroenceph. Clin. Neurophysiol. 30: 391.PubMedCrossRefGoogle Scholar
  21. 21.
    Krnjevic, K. and Phillis, J.W., 1963a, Iontophoretic studies of neurones in the mammalian cerebral cortex, J. Physiol. (Lond.) 165: 274.Google Scholar
  22. 22.
    Krnjevic, K. and Phillis, J.W., 1963b, Acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lond.) 166: 296.Google Scholar
  23. 23.
    Krnjevic, K. and Phillis, J.W., 1963c, Pharmacological properties of acetylcholine-sensitive cells in the cerebral cortex, J. Physiol. (Lond.) 166: 328.Google Scholar
  24. 24.
    Krnjevic, K., Pumain, R. and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lond.) 215: 247.Google Scholar
  25. 25.
    Krnjevic, K., Reiffenstein, R.J. and Silver, A., 1970, Chemical sensitivity of neurons in long-isolated slabs of cat cerebral cortex, Electroenceph. Clin. Neurophysiol. 29: 269.PubMedCrossRefGoogle Scholar
  26. 26.
    Krnjevic, K. and Silver, A., 1965, A histochemical study of cholinergic fibres in the cerebral cortex, J. Anat. 99: 711.PubMedGoogle Scholar
  27. 27.
    Krnjevic, K. and Silver, A., 1966, Acetylcholinesterase in the developing forebrain, J. Anat. 100: 63.PubMedGoogle Scholar
  28. 28.
    Kuo, J.F., Lee, T.P., Reyes, P.L., Walton, K.G., Donnelly, T.E., and Greengard, P., 1972, Cyclic nucleotide-dependent protein kinases, X. An assay method for the measurement of guanosine 31:51-monophosphate in various biological materials and a study of agents regulating its levels in heart and brain, J. Biol. Chem. 247: 16.PubMedGoogle Scholar
  29. 29.
    Lee, T.P., Kuo, J.F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3′:5′-cyclic monophosphate content in mammalian brain, heart muscle and intestinal smooth muscle, Proc. Nat. Acad. Sci. U.S.A. 69: 3287.CrossRefGoogle Scholar
  30. 30.
    Macintosh, F.C., 1941, The distribution of acetylcholine in the peripheral and the central nervous system, J. Physiol. (Lond.) 99: 436.Google Scholar
  31. 31.
    Macintosh, F.C. and Oborin, P.E., 1953, Release of acetylcholine from intact cerebral cortex, Abstract. XIX International Physiological Congress p. 580.Google Scholar
  32. 32.
    Mitchell, J.F., 1963, The spontaneous and evoked release of acetylcholine from the cerebral cortex, J. Physiol. 165: 98.PubMedGoogle Scholar
  33. 33.
    Pepeu, G., Mulas, A., Ruffi, A., and Sotgiu, P., 1971, Brain acetylcholine levels in rats with septal lesions, Life Sciences 10: 181.CrossRefGoogle Scholar
  34. 34.
    Phillis, J.W., 1968, Acetylcholine release from the cerebral cortex: its role in cortical arousal, Brain Res. 7: 378.PubMedCrossRefGoogle Scholar
  35. 35.
    Phillis, J.W., and Chong, G.C., 1965, Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal, Nature (Lond.) 207: 1253.CrossRefGoogle Scholar
  36. 36.
    Phillis, J.W., Lake, N. and Yarbrough, G.G., 1973, Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones, Brain Res. 53: 465.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillis, J.W. and York, D.H., 1967a, Cholinergic inhibition in the cerebral cortex, Brain Res. 5: 517.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillis, J.W. and York, D.H., 1967b, Strychnine block of neural and drug induced inhibition in the cerebral cortex, Nature (Lond.) 216: 922.CrossRefGoogle Scholar
  39. 39.
    Phillis, J.W. and York, D.H., 1968a, An intracortical cholinergic inhibitory synapse, Life Sci. Oxford 7: 65.CrossRefGoogle Scholar
  40. 40.
    Phillis, J.W. and York, D.H., 1968b, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10: 297.PubMedCrossRefGoogle Scholar
  41. 41.
    Randic, M. and Padjen, A., 1967, Effect of calcium ions on the release of acetylcholine from the cerebral cortex, Nature 215: 990.PubMedCrossRefGoogle Scholar
  42. 42.
    Randic, M., Siminoff, R. and Straughan, D.W., 1964, Acetylcholine depression of cortical neurons, Expl. Neurol. 9: 236.CrossRefGoogle Scholar
  43. 43.
    Ritchie, J.M. and Greengard, P., 1966, On the mode of action of local anaesthetics, Ann. Rev. Pharmac. 6: 405.CrossRefGoogle Scholar
  44. 44.
    Sastry, P.B., 1956, The functional significance of acetylcholine in the brain, Doctoral Dissertation, McGill University, Montreal.Google Scholar
  45. 45.
    Seeman, P., Chau, M., Goldberg, M., Sauks, T. and Sax, L., 1971, The binding of Ca2+ to the cell membrane increased by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle, Biochem. Biophys Acta. 225: 185.PubMedCrossRefGoogle Scholar
  46. 46.
    Shute, C.C.D. and Lewis, P.R., 1967, The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections, Brain 90: 497.PubMedCrossRefGoogle Scholar
  47. 47.
    Spehlmann, R., 1963, Acetylcholine and prostigmine electrophoresis at visual cortex neurons, J. Neurophysiol. 26: 127.PubMedGoogle Scholar
  48. 48.
    Spehlmann, R., 1971, Acetylcholine and the synaptic transmission of non-specific impulses to the visual cortex, Brain 94: 139.PubMedCrossRefGoogle Scholar
  49. 49.
    Stone, T.W., 1972a, Cholinergic mechanisms in the rat somatosensory cortex, J. Physiol. (Lond.) 225: 485.Google Scholar
  50. 50.
    Stone, T.W., 1972b, Cholinergic mechanisms in the rat cerebral cortex, J. Physiol. (Lond.) 222: 155.Google Scholar
  51. 51.
    Szerb, J.C., 1967, Cortical acetylcholine release and electro encephalographic arousal, J. Physiol. (Lond.) 192: 329.Google Scholar
  52. 52.
    Szerb, J.C., Malik, H., and Hunter, E.G., 1970, Relationship between acetylcholine content and release in the cat’s cerebral cortex, Can. J. Physiol. Pharmacol. 48: 780.PubMedCrossRefGoogle Scholar
  53. 53.
    Vazquez, A.J., Krip, G. and Pinsky, C., 1969, Evidence for a muscarinic inhibitory mechanism in the cerebral cortex, Expl. Neurol. 23: 318.CrossRefGoogle Scholar
  54. 54.
    Weight, F. F. and Padjen, A., 1972, Slow postsynaptic inhibition and sodium inactivation in frog sympathetic ganglion cells, Abstract. Fifth International Pharmacological Congress 1489.Google Scholar
  55. 55.
    Weight, F.F. and Votava, J., 1970, Slow synaptic excitation in sympathetic ganglion cells: Evidence for synaptic inactivation of potassium conductance, Science, N.Y. 170: 755.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John W. Phillis
    • 1
  1. 1.Department of Physiology, College of MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations