A Model of the Vertebrate Nervous System Based Largely on Disinhibition: A Key Role of the GABA System

  • Eugene Roberts
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


I would like to be able to utilize neurochemical information already currently available in such a way as to lead to a better understanding of problems of nervous system function and malfunction. In order to begin to achieve this it is necessary to have some model of normal nervous system function. The present essay follows several such efforts on my part (Roberts, 1966a; Roberts, 1966b; Roberts et al., 1964; Roberts and Matthysse, 1970; and Roberts, 1972), and is an attempt to look at the role of the γ-aminobutyric (GABA) system in somewhat larger dimensions than usual.


Purkinje Cell Brain Research Inhibitory Neuron Gaba System Command Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, R. W., and Brady, R. O., 1959, The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 926.PubMedGoogle Scholar
  2. Aprison, M. H., Davidoff, R. A., and Werman, R., 1970, Glycine: its metabolic and possible transmitter roles in nervous tissue, Handbook of Neurochem. 3: 381.Google Scholar
  3. Barker, J. L., and Nicoll, R. A., 1972, Gamma-aminobutyric acid: role in primary afferent depolarization, Science 176: 1043.PubMedCrossRefGoogle Scholar
  4. Bird, E. D., Mackay, A. V. P., Rayner, C. N., and Iversen, L. L., 1973, Reduced glutamic-acid-decarboxylase activity of post-mortem brain in Huntington’s chorea, Lancet, May 19:1090,CrossRefGoogle Scholar
  5. Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Research 25: 523.PubMedCrossRefGoogle Scholar
  6. Bradford, H. F., 1970, Metabolic response of synaptosomes to electrical stimulation: release of amino acids, Brain Research 19: 239.PubMedCrossRefGoogle Scholar
  7. Bradley, P. B., 1968, Synaptic transmission in the central nervous system and its relevance for drug action, Internat. Rev. Neurobiol. 11: 1.CrossRefGoogle Scholar
  8. Curtis, D. R., and Crawford, J. M., 1969, Central synaptic transmission-microelectrophoretic studies, Ann. Rev. Pharmacol. 9: 209.PubMedCrossRefGoogle Scholar
  9. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970, GABA, bicuculline and central inhibition, Nature 226: 1222.Google Scholar
  10. Curtis, D. R., Felix, D., and McLennan, H., 1970, GABA and hippocampal inhibition, Br. Pharmacol. 40: 881.Google Scholar
  11. Davidoff, R. A., 1972, Penicillin and presynaptic inhibition in the amphibian spinal cord, Brain Research 36: 218.PubMedCrossRefGoogle Scholar
  12. Davidson, N., and Southwick, C. A. P., 1971, Amino acids and pre-synaptic inhibition in the rat cuneate nucleus, J. Physiol. (Lond.) 219: 689.Google Scholar
  13. Dreifuss, J. J., Kelly, J. S., and Krnjevic, K., 1969, Cortical inhibition and y-aminobutyric acid, Exp. Brain Research 9: 137.CrossRefGoogle Scholar
  14. Fahn, S., and Cote, L. J., 1969, Regional distribution of γ-amino-butyric acid (GABA) in brain of the rhesus monkey, J. Neurochem. 15: 209.CrossRefGoogle Scholar
  15. Feltz, P., 1971, y-Aminobutyric acid and a caudato-nigral inhibition, Can. J, Physiol. Pharmacol. 49: 1113.Google Scholar
  16. Fonnum, F., and Storm-Mathisen, J., 1969, GABA synthesis in rat hippocampus correlated to the distribution of inhibitory neurones, Acta Physiol. Scand. 76: 35A.Google Scholar
  17. Forssberg, H., and Grillner, S., 1973, The locomotion of the acute spinal cat injected with clonidine iv., Brain Research 50: 184.PubMedCrossRefGoogle Scholar
  18. Fuxe, K., Hamberger, B., and Hflkfelt, T., 1968, Distribution of noradrenaline nerve terminals in cortical areas of the rat, Brain Research 8: 125.PubMedCrossRefGoogle Scholar
  19. Fuxe, K., Hflkfelt, T., and Ungerstedt, U. 1970, Morphological and functional aspects of central monoamine neurons, Int. Rev. Neurobiol. 13: 93.CrossRefGoogle Scholar
  20. Hockman, C. H., Lloyd, K. G., Farley, I. J., and Hornykiewicz, O., 1971, Experimental midbrain lesions: neurochemical comparison between the animal model and Parkinson’s disease, Brain Research 35: 613.PubMedCrossRefGoogle Scholar
  21. Hornykiewicz, O., 1973, Parkinson’s disease: from brain homogenate to treatment, Fed. Proc. 32: 183.PubMedGoogle Scholar
  22. Ikeda, K., and Wiersma, C. A. G., 1964, Antogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements, Comp. Biochem. Physiol. 12: 107.PubMedCrossRefGoogle Scholar
  23. Jasper, H. H., Khan, R. T., and Elliott, K. A. C., 1965, Amino acids released from the cerebral cortex in relation to its state of activation, Science 147: 1448.PubMedCrossRefGoogle Scholar
  24. Jouvet, M., 1969, Biogenic amines and states of sleep, Science 163: 32.PubMedCrossRefGoogle Scholar
  25. Julien, R. M., and Halpern, L. M., 1971, Diphenylhydantoin: evidence for a central action, Life Sci. 10 (Pt. 1): 575.CrossRefGoogle Scholar
  26. Kanazawa, I., Miyata, Y., Toyokura, Y., and Otsuka, M., 1973, The distribution of γ-aminobutyric acid (GABA) in the human substantia nigra, Brain Research 51: 363.PubMedCrossRefGoogle Scholar
  27. Kety, S. S., and Matthysse, S. (eds.), 1972, Prospects for research on schizophrenia. A report based on an NRP work session. Neurosci. Res. Prog. Bull. 10: pp. 370–507.Google Scholar
  28. Kim, J. S., Bak, I. J., Hassler, R., and Okada, Y., 1971, Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strionigral neurons, Exp. Brain Res. 14: 95.PubMedCrossRefGoogle Scholar
  29. Klawans, H. L., 1972, Pathophysiology of schizophrenia and the striatum, Diseases of the Nervous System 33: 711.PubMedGoogle Scholar
  30. Krnjevic, J., 1970, Dopamine, acetylcholine and excitatory amino acids in nigrostriatal transmission, in “L-Dopa and Parkinsonism” (A. Barbeau and F. H. McDowell, eds.), pp. 189–191, F. A. Davis Co., Philadelphia.Google Scholar
  31. Krnjevic, K., and Phillis, J. W., 1963, Actions of certain amines on cerebral cortical neurones, Br. J. Pharmac. Chemother. 20: 471.Google Scholar
  32. Kuriyama, K., Sisken, B., Haber, B., and Roberts, E., 1968, The gamma-aminobutyric system in rabbit retina, Brain Research 9: 165.PubMedCrossRefGoogle Scholar
  33. Marcus, R. J., Winters, W. D., Roberts, E., and Simonsen, D. G., 1971, Neuropharmacological studies of imidazole-4-acetic acid actions in the mouse and rat, Neuropharmacology 10: 203.PubMedCrossRefGoogle Scholar
  34. Matthysse, S., 1973, Antipsychotic drug actions: a clue to the neuropathology of schizophrenia? Fed. Proc. 32: 200.PubMedGoogle Scholar
  35. Maynard, D. M., 1972, Simpler networks, Ann. J. Acad. Sci. 193: 59.CrossRefGoogle Scholar
  36. McGeer, E. G., McGeer, P. L., and McLennan, H., 1961, The inhibitory action of 3-hydroxytyramine, gamma-ami nobutyrate acid (GABA) and some other compounds towards the crayfish stretch receptor neuron, J. Neurochem. 8: 36.CrossRefGoogle Scholar
  37. McGeer, P. L., McGeer, E. G., Fibiger, H. C., and Wickson, V., 1971, Neostriatal choline acetylase and cholinesterase following selective brain lesions, Brain Research 35: 308.PubMedCrossRefGoogle Scholar
  38. McGeer, P. L., McGeer, E. G., Wada, J. A., and Jung, E., 1971, Effects of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase, Brain Research 32: 425.PubMedCrossRefGoogle Scholar
  39. Meehl, P. E., 1962, Schizotaxia, schizotypy, schizophrenia, Am. Psychol. 17: 827.CrossRefGoogle Scholar
  40. Meehl, P. E., 1964, Manual for Use with Checklist of Schizotypic Signs, Minneapolis: University of Minnesota Medical School, p. 29.Google Scholar
  41. Mitchell, J. F., and Srinivasan, V., 1969, Release of H-γ-aminobutyric acid from the brain during synaptic inhibition, Nature 224: 663.CrossRefGoogle Scholar
  42. Miyata, Y., and Otsuka, M., 1972, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischaemia, J. Neurochem. 19: 1833.PubMedCrossRefGoogle Scholar
  43. Nauta, W. J. H., 1972, The central visceromotor system: a general survey, in “Limbic System Mechanisms and Autonomic Function,” (C. H. Hockman, ed.) pp. 21–38, Charles C. Thomas, Springfield, Illinois.Google Scholar
  44. Nicoll, R. A., 1971, Pharmacological evidence for GABA as the transmitter in granule cell inhibition in the olfactory bulb, Brain Research 35: 137.PubMedCrossRefGoogle Scholar
  45. Obata, K., and Highstein, S. M., 1970, Blocking by picrotoxin of both vestibular inhibition and GABA action on rabbit oculomotor neurones, Brain Research 18: 538.PubMedCrossRefGoogle Scholar
  46. Obata, K., and Takeda, K., 1969, Release of γ-aminobutyric acid into the fourth ventricle induced by stimulation of the cat’s cerebellum, J. Neurochem. 16: 1043.PubMedCrossRefGoogle Scholar
  47. Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of γ-aminobutyric acid on Deiters1 neurones, Exp. Brain Res. 4: 43.PubMedCrossRefGoogle Scholar
  48. Okada, Y., Nitsch-Hassler, C., Kim, J. S., Bäk, I. J., and Hassler, R., 1971, Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system, Exp. Brain Res. 13: 514.PubMedCrossRefGoogle Scholar
  49. Olson, L., and Fuxe, K., 1971, On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation, Brain Research 28: 165.PubMedCrossRefGoogle Scholar
  50. Otsuka, M., Iversen, L. L., Hall, Z. W., and Kravitz, E. A., 1966, Release of gamma-aminobutyric acid from inhibitory nerves of lobster, Proc. Nat. Acad. Sci. (U.S.A.) 56: 1110.CrossRefGoogle Scholar
  51. Otsuka, M., Konishi, S., and Takahashi, T., 1972, A further study of the motoneuron-depolarizing peptide extracted from dorsal roots of bovine spinal nerves, Proc. Jap. Acad. 48: 747.Google Scholar
  52. Perry, T. L., Berry, K., Hansen, S., Diamond, S., and Mok, C., 1971a, Regional distribution of amino acids in human brain obtained at autopsy, Neurochem. 18: 513.CrossRefGoogle Scholar
  53. Perry, T. L., Hansen, S., Berry, K., Mok, C., and Lesk, D., 1971b, Free amino acids and related compounds in biopsies of human brain, Neurochem. 18: 521.CrossRefGoogle Scholar
  54. Perry, T. L., Hansen, S., and Kloster, M., 1973, Huntington’s chorea. Deficiency of γ-aminobutyric acid in brain, New England J. Med. 288: 337.CrossRefGoogle Scholar
  55. Pollack, E. D., and Crain, S. M., 1972, Development of motility in fish embryos in relation to release from early CNS inhibition, J. Neurobiol. 3: 381.PubMedCrossRefGoogle Scholar
  56. Precht, W., and Yoshida, M., 1971, Blockage of caudate-evoked inhi-bition of neurons in the substantia nigra by picrotoxin, Brain Research 32: 229.PubMedCrossRefGoogle Scholar
  57. Randrup, A., and Munkvad, I., 1970, Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamines, in “International Symposium on Amphetamines and Related Compounds” (E. Costa and S. Garattini, eds.) pp. 279–332, Academic Press, New York.Google Scholar
  58. Roberts, E., 1966a, The synapse as a biochemical self-organizing microcybernetic unit, Brain Research 1: 117.PubMedCrossRefGoogle Scholar
  59. Roberts, E., 1966b, Models for correlative thinking about brain, behavior, and biochemistry, Brain Research 2: 109.CrossRefGoogle Scholar
  60. Roberts, E., 1972, An hypothesis suggesting that there is a defect in the GABA system in schizophrenia, Neurosci. Res. Pro. Bull. 10: 468.Google Scholar
  61. Roberts, E., and Frankel, S., 1950, γ-Aminobutyric acid in brain, Fed. Proc. 9: 219.Google Scholar
  62. Roberts, E., and Hammerschlag, R., 1972, Amino acid transmitters, in “Basic Neurochemistry” (R. W. Albers, G. J. Siegel, R. Katzman, and B. W. Agranoff, eds.) pp. 131–165, Little, Brown and Company, Boston.Google Scholar
  63. Roberts, E., and Kuriyama, K., 1968, Biochemical-physiological correlations in studies of the γ-aminobutyric acid system, Brain Research 8: 1.PubMedCrossRefGoogle Scholar
  64. Roberts, E., and Matthysse, S., 1970, Neurochemistry at the crossroads of neurobiology, Ann. Rev. Biochem. 39: 777.PubMedCrossRefGoogle Scholar
  65. Roberts, E., and Simonsen, D. G., 1966, A hypnotic and possible analgesic effect of imidazoleacetic acid in mice. Biochem. Pharmacol. 15: 1875.CrossRefGoogle Scholar
  66. Roberts, E., and Simonsen, D. G., 1970, Some properties of cyclic 3′,5′-nucleotide phosphodiesterase of mouse brain: effects of imidazole-4-acetic acid, chlorpromazine, cyclic 3′,5′-GMP, and other substances, Brain Research 24: 91.PubMedCrossRefGoogle Scholar
  67. Roberts, E., Wein, J., and Simonsen, D. G., 1964, γ-Aminobutyric acid (GABA), vitamin Bg, and neuronal function-a speculative synthesis, Vitamins and Hormones 22: 503.Google Scholar
  68. Roeder, K. D., Tozian, L., and Weiant, E. A., 1960, Endogenous nerve activity and behavior in the mantis and cockroach. Insect Physiol. 4: 45.CrossRefGoogle Scholar
  69. Saito, K., Wu, J.-Y., and Roberts, E., 1973, Immunochemical com-parisons of vertebrate glutamic acid decarboxylase, Brain Research, In Press.Google Scholar
  70. Salvador, R. A., and Albers, R. W., 1959, The distribution of glutamic-γ-aminobutyrate transaminase in the nervous system of the rhesus monkey, Biol. Chem. 234: 922.Google Scholar
  71. Schousboe, A., Wu, J.-Y., and Roberts, E., 1973, Purification and characterization of the 4-aminobutyrate-2-ketogl utarate transaminase from mouse brain, Biochemistry, In Press.Google Scholar
  72. Srinivasan, V., Neal, M. J., and Mitchell, J. F., 1969, The effect of electrical stimulation and high potassium concentrations on the efflux of [3H]y-aminobutyric acid from brain slices, J. Neurochem. 16: 1235.PubMedCrossRefGoogle Scholar
  73. Takeuchi, A., and Takeuchi, N., 1966, On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of γ-aminobutyric acid, in Physiol. (Lond.) 183: 433.Google Scholar
  74. Tunnicliff, G., Wein, J., and Roberts, E., 1972, Effects of imidazole-acetic acid on brain amino acids and body temperature in mice, Neurochem. 19: 2017.CrossRefGoogle Scholar
  75. van Balgooy, J. N. A., Marshall, F. D., and Roberts, E., 1972, Metabolism of intracerebrally administered histidine, histamine, and imidazoleacetic acid in mice and frogs, J. Neurochem. 19: 2341.PubMedCrossRefGoogle Scholar
  76. Velikaya, R. R., and Sycheva, T. M., 1970, Role of the reticular formation of the brainstem in background activity of cortical neurons, Neirofiziologiya 2:43. In English in NeuroScience Transaltions 15: 11, 1970–71.Google Scholar
  77. Wiersma, C. A. G., and Ikeda, K., 1964, Interneurons commanding swimmeret movements in the crayfish, Procambarns clarki (Girard), Comp. Biochem. Physiol. 12: 509.PubMedCrossRefGoogle Scholar
  78. Woodward, D. J., Rushmer, D., Hoffer, B. J., Siggins, G. R., Oliver, A. P., and Armstrong, C., 1971, Evidence tor the presence of stellate cell inhibition in frog cerebellum and for mediation of this inhibition by gamma-aminobutyric acid, Fed. Proc. 30: 318.Google Scholar
  79. Wu, J.-Y., and Roberts, E., 1973, Comparative studies of L-glutamate decarboxylases from mouse brain and kidney. Trans. Am. Soc. Neurochem. 4: 70.Google Scholar
  80. Wu, J.-Y., Matsuda, T., and Roberts, E., 1973, Purification and characterization of glutamate decarboxylase from mouse brain, J Biol. Chem. 248: 3029.PubMedGoogle Scholar
  81. Yoshida, M., and Precht, W., 1971, Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers, Brain Research 32: 225.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Eugene Roberts
    • 1
  1. 1.Division of NeurosciencesCity of Hope National Medical CenterDuarteUSA

Personalised recommendations