Biochemical Neuroanatomy of the Basal Ganglia

  • P. L. McGeer
  • H. C. Fibiger
  • T. Hattori
  • V. K. Singh
  • E. G. McGeer
  • L. Maler
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


It is evident that reliable information on the neurohumoral coding of brain function must have as its basis a sound knowledge of biochemical neuroanatomy. It is not enough merely to establish the details of neuronal connections between various areas of brain. The biochemical modus operandi of the cells making up the pathways must also be known. The great majority of the mammalian nervous system operates via chemical synapses where specific neurotransmitters are responsible for modulating the excitability of postsynaptic elements. Biochemical neuroanatomy is concerned with defining the neurotransmitters associated with particular cell groups.


Tyrosine Hydroxylase Substantia Nigra Axonal Transport Globus Pallidus Glutamic Acid Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67: 313.CrossRefGoogle Scholar
  2. Aprison, M. H., Davidoff, R. A. and Werman, R., 1970, Glycine: its metabolic and possible roles in nervous tissue, in “Handbook of Neurochemistry, Volume 3” (A. Lajtha, ed.), pp. 381–397, Plenum Press, New York, London.Google Scholar
  3. Bernheimer, H. and Hornykiewicz, O., 1962, Das verhalten einiger enzyme im gehirn normaler und Parkinson-kranker menschen, Naunyn-Schmiedeberg Arch. Exp. Path. Pharmak. 243: 295.CrossRefGoogle Scholar
  4. Bird, E. D., Mackay, A. V. P., Rayner, C. N. and Iversen, L. L., 1973, Reduced glutamic acid decarboxylase activity of post mortem brain in Huntington’s chorea, Lancet i:1090.CrossRefGoogle Scholar
  5. Carpenter, M. B. and Strominger, N. L., 1967, Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus, Am. J. Anat. 121: 41.PubMedCrossRefGoogle Scholar
  6. Dählstrom, A. and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system, Acta Physiol. Scand. 62, Suppl. 232: 55.Google Scholar
  7. Ehringer, H. and Hornykiewicz, O., 1960, Verteilung von noradrenalin und dopamin (3-hydroxytyramin) im gehirn des menschen und ihr verhalten bei erkrankungen des extrapyramidal systems, Klin. Wschr. 38: 1236.PubMedCrossRefGoogle Scholar
  8. Falck, B., Hillarp, N. A., Thieme, G. and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10: 348.CrossRefGoogle Scholar
  9. Feltz, P. and De Champlain, J., 1972, Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals, Brain Res. 43: 595.PubMedCrossRefGoogle Scholar
  10. Fibiger, H. C., Pudritz, R. E., McGeer, P. L. and McGeer, E. G., 1972, Axonal transport in nigro-striatal and nigro-thalamic neurons: Effects of medial forebrain bundle lesions and 6-hydroxydopamine, J. Neurochem. 19: 1697.PubMedCrossRefGoogle Scholar
  11. Fibiger, H. C., McGeer, E. G. and Atmadja, S., 1973, Axoplasmic transport of dopamine in nigro-striatal neurons, J. Neurochem., in press.Google Scholar
  12. Fonnum, F., 1970, Topographical and subcellular localization of ChAc, J. Neuroehem. 17: 1029.CrossRefGoogle Scholar
  13. Frigyesi, T. L. and Purpura, D. P., 1967, Electrophysiological analysis of reciprocal caudato-nigral relations, Brain Res. 6: 440.PubMedCrossRefGoogle Scholar
  14. Globus, A., Lux, H. D., Schubert, P. and Kaups, P., 1971, Labelling of nearby neurons following the intracellular iontophoresis of H3-glycine, Anat. Ree. 169: 325.Google Scholar
  15. Grafstein, B., 1969, Axonal transport: Communication between soma and synapse, in “Advances in biochemical psycho pharmacology,” (E. Costa and P. Greengard, eds.), pp. 11–25, Raven Press, New York, Volume 1.Google Scholar
  16. Grafstein, B., 1971, Transneuronal transfer of radioactivity in the central nervous system, Science 172: 177.PubMedCrossRefGoogle Scholar
  17. Graham, L. T. Jr., 1972, Intraretinal distribution of GABA content of GAD activity, Brain Res. 36 (2): 476.PubMedCrossRefGoogle Scholar
  18. Hattori, T., McGeer, P. L., Fibiger, H. C. and McGeer, E. G., 1973, On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies, Brain Res. 54: 103.PubMedCrossRefGoogle Scholar
  19. Lloyd, K. G. and Hornykiewicz, O., 1973, L-glutamic acid decarboxylase in Parkinson’s disease: effect of L-dopa therapy, Nature, in press.Google Scholar
  20. McGeer, E. G. and McGeer, P. L., 1973a, New concepts in neurotransmitter regulation, (A. J. Mandell, ed.), pp. 69–89, Plenum Press, New York, London.Google Scholar
  21. McGeer, E. G., McGeer, P. L. and Wada, J. A., 1971, Distribution of tyrosine hydroxylase in human and animal brain. J. Neuroehem. 18: 1647.CrossRefGoogle Scholar
  22. McGeer, E. G., Fibiger, H. C., McGeer, P. L. and Brooke, S., 1973a, Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-hydroxydopamine administration, Brain Res. 52: 289.PubMedCrossRefGoogle Scholar
  23. McGeer, P. L., 1963, Central amines and extrapyramidal function, J. Neuropsych. 4: 247.Google Scholar
  24. McGeer, P. L. and McGeer, E. G., 1971b, Cholinergic enzyme systems in Parkinson’s disease, Arch. Neurol. 25: 265.PubMedCrossRefGoogle Scholar
  25. McGeer, P. L. and McGeer, E. G., 1973b, Neurotransmitter synthetic enzymes, Progress in Neurobiology 2: 67.CrossRefGoogle Scholar
  26. McGeer, P. L., McGeer, E. G., Fibiger, H. C. and Wickson, V., 1971b, Neostriatal choline acetylase and cholinesterase following selective brain lesions, Brain Res. 35: 308.PubMedCrossRefGoogle Scholar
  27. McGeer, P. L., McGeer, E. G., Wada, J. A. and Jung, E., 1971c, Effect of globus pallidus lesions and Parkinson’s disease on brain glutamic acid decarboxylase, Brain Res. 32: 425.PubMedCrossRefGoogle Scholar
  28. McGeer, P. L., McGeer, E. G. and Wada, J. A., 1971d, Glutamic acid decarboxylase in Parkinson’s disease and epilepsy, Neurology 21: 1000.PubMedCrossRefGoogle Scholar
  29. McGeer, P. L., Fibiger, H. C., Maler, L., Hattori, T. and McGeer, E. G., 1973b, Evidence for descending pallido-nigral GABA-containing neurons, in “Advances in neurology, Volume 5” (F. McDowell and A. Barbeau, eds.), Parkinson’s Disease — Proceedings of the 2nd Canadian-American Conference, Raven Press.Google Scholar
  30. McGeer, P. L., McGeer, E. G. and Fibiger, H. C., 1973c, Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea, Neurology, in press.Google Scholar
  31. Moore, R. Y., Bhatnagar, R. K. and Heller, A., 1971, Anatomical and chemical studies of a nigro-neostriatal projection in the cat, Brain Res. 30: 119.PubMedCrossRefGoogle Scholar
  32. Perry, T. L., Hansen, S. and Kloster, M., 1973, Huntington’s chorea, deficiency of y-aminobutyric acid in brain, New Eng. J. Med. 288: 337.PubMedCrossRefGoogle Scholar
  33. Singh, V. K., Fibiger, H. C., McGeer, E. G. and McGeer, P. L., 1973, Biochemical studies on axonal transport of proteins in nigro-striatal system, Abstracts of Canadian Federation of Biological Societies 20: 105.Google Scholar
  34. Storm-Mathisen, J. and Fonnum, F., 1971, Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region, J. Neurochem. 18: 1105.PubMedCrossRefGoogle Scholar
  35. Ungerstedt, U., 1971, Stereotaxic mapping of monoamine pathways, Acta Physiol. Scand. Suppl. 367.Google Scholar
  36. Voneida, T. J., 1960, An experimental study of the course and destination of fibers arising in the head of caudate nucleus in the cat and monkey, J. Comp. Neurol. 115: 75.PubMedCrossRefGoogle Scholar
  37. York, D. H., 1970, Possible dopaminergic pathway from substantia nigra to putamen, Brain Res. 20: 233.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • P. L. McGeer
    • 1
  • H. C. Fibiger
    • 1
  • T. Hattori
    • 1
  • V. K. Singh
    • 1
  • E. G. McGeer
    • 1
  • L. Maler
    • 1
  1. 1.Kinsmen Laboratory of Neurological Research Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations