Modulation of Subcortical Inhibitory Mechanisms by Melatonin

  • Augusto Fernández-Guardiola
  • Fernando Antón-Tay
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


The existence of an active arresting subcortical mechanism in the last state of convulsive activity has been suggested by several authors (Jung, 1949; Gastaut and Fisher-Williams, 1959; Fernández Guardiola et al., 196l; Kreindler, 1965). This assumption is based on experimental evidence and the existence of an inhibitory mechanism which integrates descending and ascending influences. Anatomically, this mechanism is located in the cerebellum, the ventral ponto-bulbar reticular formation (Magoun and Rhines, 1946), the caudate nucleus and the diffuse thalamic system. This inhibitory organization might be acting through various kinds of physiological inhibitions: Purpura and Housepian (1961) have shown direct cortical inhibition with prolonged IPSP (more than 200 msec), while Giaquinto et al. (1964) have reported a pre-synaptic inhibition of subcortical origin on spinal reflexes during natural sleep.


Pineal Gland Galvanic Skin Response Paradoxical Sleep Pyridoxal Phosphate Melatonin Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anton-Tay, P., 1971, Pineal-brain relationships. In “The Pineal Gland”, ( G. E. W. Wolstenholme, J. Knight, ed.), pp. 213–227, Churchill, London.Google Scholar
  2. Anton-Tay, F., Chou, C., Anton, S., and Wurtman, R.J., 1968, Brain serotonin concentration: Elevation following intraperitoneal administration of melatonin, Science, 162: 277 - 278.PubMedCrossRefGoogle Scholar
  3. Anton-Tay, P., Díaz, J.L., and Fernández-Guardiola, A., 1971, On the effect of melatonin upon human brain. Its possible therapeutic implications, Life Science, 10: 814–850.CrossRefGoogle Scholar
  4. Anton-Tay, P., Sepúlveda, J., and Gonzalez, S., 1970, Increase of brain pyridoxal phosphokinase activity following melatonin administration, Life Science, 9: 1283–1288.CrossRefGoogle Scholar
  5. Anton-Tay, P., and Wurtman, R.J., 1969 Regional uptake of H3-melatonin from blood or cerebrospinal fluid by rat brain, Nature, 221: 474–475.PubMedCrossRefGoogle Scholar
  6. Axelrod, J., and Weissbach, H., 1961, Purification and properties of hydroxyindole-0-methyItransferase, J. Biol. Chem, 236: 211–213.PubMedGoogle Scholar
  7. Barchas, J., Da Costa, F., and Spector, S., 1967, Acute pharmacology of melatonin, Nature, 214: 919–920.PubMedCrossRefGoogle Scholar
  8. Fernández-Guardiola, A., Alcaraz, M., and Guzmán-Flores, C., 1956, Modificación de la descarga convulsiva cortical por estimulación mesencefálica, Boletín del Instituto de Estudios Médicos y Biológicos (México) 14: 15–21.Google Scholar
  9. Fernández-Guardiola, A., and Ayala, F., 1971, Red nucleus fast activity and signs of paradoxical sleep appearing during the extinction of experimental seizures, Electroenceph. Clin. Neurophysiol, 30: 547–555.PubMedCrossRefGoogle Scholar
  10. Fernández-Guardiola, A., Okujava, V.M., and Guma, E., 1968, Peripheral and central phenomena of post-epileptic extinction, Epilepsia (Amst), 9: 303–310.CrossRefGoogle Scholar
  11. Martini, L., Fraschini, F., and Motta, M., 1968, Neural control of anterior pituitary functions. Iri Beeent Prog, Hormone Res. (E.B. Astwood, ed), pp. 439–496. Academic Press. New York and London.Google Scholar
  12. Gastaut, H., and Fischer-Williams, M., 1959, The physiopathology of epileptic seizures, in “Handbook of Physiology” (J. Field ed.), Amer. Physiol. Soc., Washington, pp. 1–329.Google Scholar
  13. Giaquinto, S., Pompeiano, O., and Somogyi, I., 1964, Descending inhibitory influences on spinal reflexes during natural sleep. Arch. Ital. Biol, 102: 282–307.PubMedGoogle Scholar
  14. Hishikawa, Y., Cramer, H., and Kuhlo, W., 1969, Natural and melatonin-induced sleep in young chickens,a behavioural and electrographic study, Experimental Brain Research, 7: 84–94.CrossRefGoogle Scholar
  15. Jouvet, M., 1965, Paradoxical sleep: a study of its nature and mechanism, In “Progress in brain research”, (Akert ed.), Vol. 18, Elsevier, Amsterdam, pp. 20–57Google Scholar
  16. Jung, R., 1949, Hirnelektrische Untersuchungen über den Elektrokrampf; die Erregungsablaufe in corticalen Hirnregionen bei Katze und Hund, Arch. Psychol. Nervenkr, 183: 206–214.CrossRefGoogle Scholar
  17. Kreindler, A., 1955, Epilepsia. Bucaresti, Acad. R.P.R.Google Scholar
  18. Magoun, H.W., and Rhines, R., 1946, An inhibitory mechanism in the bulbar reticular formation, Neurophysiol, 9: 165–171.Google Scholar
  19. Marczynski, T.J., Yamaguchi, N., Ling, G.M., and Grodzinska, L., 1964, Sleep induced by the administration of melatonin (5-methoxy-N-acetyltryptamine) to the hypothalamus in unrestrained cats, Experientia, 20: 435 - 436.PubMedCrossRefGoogle Scholar
  20. Ortega, B.G., Anton-Tay, F., Esparza, N., and Cancino, F.M., 1973, Melatonin: Effect on cAMP concentration in the brain. In. Proceeding of the Fourth International Meeting of the International Society for Neurochemistry. Tokyo, Japan. In Press.Google Scholar
  21. Purpura, D.P., and Housepian, E.M., 1961, Alterations in corticospinal neuron activity associated with thalamocortical recruiting responses, Electroencephalog. Clin. Neurophysiol, 13: 365–381,CrossRefGoogle Scholar
  22. Rechtschaffen, A., and Kales, A,, 1968, A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, Public Health Service, U. S. Government Printing Office, Washington, D. C. pp. 1–12.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Augusto Fernández-Guardiola
    • 1
  • Fernando Antón-Tay
    • 1
  1. 1.Instituto de Investigaciones BiomédicasCiudad Universitaria, UNAMMéxico 20, D.F.Mexico

Personalised recommendations