5-Hydroxyindoleacetic Acid in Cerebrospinal Fluid During Wakefulness, Sleep and After Electrical Stimulation of Specific Brain Structures

  • Miodrag Radulovački
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


Jouvet has implicated 5-hydroxytryptamine (5-HT, serotonin) in the regulation of slow-wave sleep (SWS). He and his co-workers showed that subtotal destruction of the raphe nuclei decreased the level of 5-HT in the brain and led to a state of severe insomnia (Jouvet et al., 1966) and that the injection of p-chlorophenylalanine (pCPA), which inhibits 5-HT synthesis, produced similar results (Delorme et al., 1966). This effect was reversed by administration of 5-hydroxytryptophan (5-HTP), a precursor of 5-HT, which restored SWS and paradoxical sleep (PS).


Electrical Stimulation Dorsal Raphe Nucleus Preoptic Area Immobilization Stress Paradoxical Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, H., and Roos, B., 1968, 5-Hydroxyindoleacetic acid in cerebrospinal fluid after administration of 5-hydroxytryptophan, Acta pharmacol. (Kbh.) 26: 293.CrossRefGoogle Scholar
  2. Bliss, E. L., Thatcher, W., and Ailion, J., 1972, Relationship of stress to brain serotonin and 5-hydroxyindoleacetic acid, J. psychiat. Res. 9: 71.PubMedCrossRefGoogle Scholar
  3. Bowers, M. B., Jr., 1970, 5-Hydroxyindoleacetic acid in the brain and cerebrospinal fluid of the rabbit following administration of drugs affecting 5-hydroxytryptamine, J. Neurochem. 17: 827.PubMedCrossRefGoogle Scholar
  4. Bulat, M., Personal communication.Google Scholar
  5. Bulat, M., and Zivkovic, B., 1973, Penetration of 5-hydroxyindoleacetic acid across the blood-cerebrospinal fluid barrier, J. Pharm. Pharmacol. 25: 178.PubMedCrossRefGoogle Scholar
  6. Coppen, A., 1971, Biogenic amines and affective disorders, in “Brain Chemistry and Mental Disease,” (B. T. H., and W. M. McIsaac, eds.), pp. 123–133, Plenum Press, New York.CrossRefGoogle Scholar
  7. Corrodi, H., Fuxe, K., and Hokfelt, T., 1968, The effect of immobilization stress on the activity of central monoamine neurons, Life Sci. 7: 107.PubMedCrossRefGoogle Scholar
  8. Curzon, G., and Green, A. R., 1969, Effects of immobilization on rat liver tryptophan pyrrolase and brain 5-hydroxytryptamine metabolism, Br. J. Pharmacol, 37: 689.PubMedGoogle Scholar
  9. Curzon, G., Gumpert, E. J. W., and Sharpe, D. M., 1971, Amine metabolites in the lumbar cerebrospinal fluid of humans with restricted flow of cerebrospinal fluid, Nature New Biol. 231: 189.PubMedGoogle Scholar
  10. Curzon, G., Joseph, M. H., and Knott, P. J., 1972, Effect of immobilization on food deprivation on rat brain tryptophan metabolism, J. Neurochem. 19: 1967.PubMedCrossRefGoogle Scholar
  11. Davson, H., 1967, “Physiology of the Cerebrospinal Fluid,” J. and A. Churchill, London.Google Scholar
  12. Delorme, F., Froment, J. L., et Jouvet, M., 1966, Suppression du sommeil par la parachlorometamphetamine et la parachlorophenylalanine, C. R. Soc. Biol. (Paris) 160: 2347.Google Scholar
  13. Eccleston, D., Ashcroft, G. W., Moir, A. T. B., Parker-Rhodes, A., Lutz, W., and O’Mahoney, D. P., 1968, A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid, J. Neurochem. 15: 947.PubMedCrossRefGoogle Scholar
  14. Eccleston, D., Ashcroft, G. W., Crawford, T. B., Stanton, J. B., Wood, D., and McTurk, P. H. T., 1970, Effect of tryptophan administration on 5-HIAA in cerebrospinal fluid in man, J. Neurol. Neurosurg. Psychiat. 33: 269.PubMedCrossRefGoogle Scholar
  15. Fuxe, K., 1965, The distribution of monoamine terminals in the central nervous system, Acta Physiol. Scand. 64, Suppl. 247.Google Scholar
  16. Grastyan, E., Karmos, G., Vereczkey, L., and Kellenyi, L., 1966, The hippocampal electrical correlates of the homeostatic regulation of motivation, Electroenceph. clin. Neurophysiol. 21: 34.PubMedCrossRefGoogle Scholar
  17. Hartman, E., Chung, R., and Chien, C., 1971, L-tryptophane and sleep, Psychopharmacologia (Berl.) 19: 114.CrossRefGoogle Scholar
  18. Isaac, L., and Radulovacki, M., Unpublished observation.Google Scholar
  19. Jacobs, B. L., Asher, R., Henriksen, S. J., and Dement, W. C., 1972, Electroencephalographs and behavioral effects of stimulation of the raphe nuclei in cats, in “Sleep Research,” (M. H. Chase, W. C. Stern, and P. L. Walter, eds.), p. 23, BIS-BRI, UCLA, Los Angeles.Google Scholar
  20. Jouvet, D., Vimont, P., Delorme, J. F., and Jouvet, M., 1964, Etude de la privation de phase paradoxale du sommeil chez le chat, C. R. Soc. Biol. (Paris) 158: 756.Google Scholar
  21. Jouvet, M., Bobillier, P., Pujol, J. F., et Renault, J., 1966, Effets des lesions du systeme du raphe sur le sommeil et la serotonine cerebrale, C. R. Soc. Biol. (Paris) 160: 2343.Google Scholar
  22. Karmos, G., and Radulovaëkî, M., 5-Hydroxyindoleacetic acid in cerebrospinal fluid after electrical stimulation of the dorsal raphe nucleus, anterior hypothalamus and preoptic area, (in press).Google Scholar
  23. Korf, J., and Valkenburgh-Sikkema, T., 1969, Fluorimetric determination of 5-hydroxyindoleacetic acid in human urine and cerebrospinal fluid, Clin. chim. Acta 26: 301.PubMedCrossRefGoogle Scholar
  24. Kuroki, T., 1958, Arrest reaction elicited from the brain stem, Folia psychiat. neurol. jap. 12: 170.Google Scholar
  25. Matsumoto, J., et Jouvet, M., 1964, Effets de reserpine, DOPA et 5-HTP sur les deux états de sommeil, C. R. Soc. Biol. (Paris) 158: 2137.Google Scholar
  26. Meek, J. L., and Neff, N. H., 1973, Is cerebrospinal fluid the major avenue for the removal of 5-hydroxyindoleacetic acid from the brain?, Neuropharmacol. 12: 497.CrossRefGoogle Scholar
  27. Moir, A. T. B., Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., and Guldberg, H. C., 1970, Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain, Brain 93: 357.PubMedCrossRefGoogle Scholar
  28. Neff, N. H., Tozer, T. N., and Brodie, B. B., 1967, Application of steady-state kinetics to studies of the transfer of 5-hydroxyindoleacetic acid from brain to plasma, J. Pharmacol, exp. Ther. 158: 214.Google Scholar
  29. Oswald, I., Ashcroft, G. W., Berger, R. J., Eccleston, D., Evans, J., and Thacore, V. R., 1966, Some experiments in the chemistry of normal sleep, Brit. J. Psychiat. 112: 273.Google Scholar
  30. Radulovacki, M., and Girgis, M., 1968, The permanent cannula to cisterna magna in cats, Sudan med. J, 6: 170.Google Scholar
  31. Roos, B. E., and Sjostrom, R., 1969, 5-Hydroxyindoleacetic acid (and homovanillic acid) levels in the cerebrospinal fluid after probenecid application in patients with manic-depressive psychosis, Pharmacol. Clin. 1: 153.Google Scholar
  32. Roos, B. E., Anden, N.-E., and Werdinius, B., 1964, Effect of drugs on the levels of indole and phenolic acids in the central nervous system, Int. J. Neuropharmacol. 3: 117.PubMedCrossRefGoogle Scholar
  33. Stern, W. C., Miller, F. P., Cox, R. H., and Maickel, R. P., 1971, Brain norepinephrine and serotonin levels following REM sleep deprivation in the rat, Psychopharmacologia (Berl.) 22: 50.CrossRefGoogle Scholar
  34. Wasman, M., and Flynn, J. P., 1962, Directed attack elicited from hypothalamus, Arch. Neurol. (Chic.) 6: 220.CrossRefGoogle Scholar
  35. Weir, R. L., Chase, T. N., NG, L. K. Y., and Kopin, I. J., 1973, 5-Hydroxyindoleacetic acid in spinal fluid: relative contribution from brain and spinal cord, Brain Res. 52: 409.Google Scholar
  36. Weiss, E., Bordwell, B., Seeger, M., Lee, J., Dement, W., and Barchas, J., 1968, Changes in brain serotonin (5-HT) and 5-hydroxyindole 3-acetic acid (5-HIAA) in REM sleep deprived rats, Psychophysiology 5: 209.Google Scholar
  37. Williams, H. L., Lester, B. K., and Coulter, J. D., 1968, Monoamines and the EEG stages of sleep, Psychophysiology 5: 210.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Miodrag Radulovački
    • 1
  1. 1.Department of Pharmacology, College of MedicineUniversity of IllinoisChicagoUSA

Personalised recommendations