The Role of γ-Aminobutyric Acid Metabolism in the Regulation of Cerebral Excitability

  • Ricardo Tapia
Part of the Advances in Behavioral Biology book series (ABBI, volume 10)


The chemical transmission of nerve impulses across the synaptic gap is probably the most important event in the function of the nervous system, since this phenomenon is a determinant factor for the existence of unidirectional, specific, regulated and plastic communication between neurons. Thus, it can be said that the chemical synaptic transmission is the clue event for the function of the different neuronal circuits underlying the diverse physiological roles of the nervous system.


Storage Site Postsynaptic Neuron Excitatory Neuron Continuous Release Pyridoxal Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberici, M., Rodriguez de Lores Arnaiz, G., and De Robertis, E., 1969, Glutamic acid decarboxylase inhibition and ultrastructural changes by the convulsant drug allylglycine, Biochem. Pharmac. 18: 137.CrossRefGoogle Scholar
  2. Aprison, M. H., and Hingtgen, J. N., 1972, Serotonin and behavior: a brief summary, Fed. Proc. 31: 121.PubMedGoogle Scholar
  3. Auerbach, A. A., 1972, Transmitter release at chemical synapses, in “Structure and Function of Synapses”, (G. D. Pappas and D. P. Purpura, eds.), pp. 137–159, Raven Press, New York.Google Scholar
  4. Baxter, C. F., 1970, The nature of γ-aminobutyric acid, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 289–353, Plenum Press, New York.Google Scholar
  5. Bloom, F. E., and Giarman, N. J., 1968, Physiologic and pharmacologic considerations of biogenic amines in the nervous system, Ann. Rev. Pharmac. 8: 229.CrossRefGoogle Scholar
  6. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970a, GABA, bicuculline and central inhibition, Nature (Lond.) 226: 1222.CrossRefGoogle Scholar
  7. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R., 1970b, Bicuculline and central GABA receptors, Nature (Lond.) 228: 676.CrossRefGoogle Scholar
  8. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., and McLennan, H., 1971, Antagonism between bicuculline and GABA in the cat brain, Brain Res. 33: 57.PubMedCrossRefGoogle Scholar
  9. Cutler, R. W. P., Hammerstad, J. P., Cornick, L. R., and Murray, J. E., 1971. Efflux of amino acid neurotransmitters from rat spinal cord slices. 1. Factors influencing the spontaneous efflux of [14C] glycine and 3H-GABA, Brain Res. 35: 337.PubMedCrossRefGoogle Scholar
  10. Eccles, J. C., 1964, “The Physiology of Synapses”, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. Florey, E. (Ed.), 1961, “Nervous Inhibition”, Pergamon Press, New York.Google Scholar
  12. Fonnum, F., 1968, The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea pig brain, Biochem. J. 10 6: 401.Google Scholar
  13. Glowinski, J., Besson, M. J., Cheramy, A, and Thierry, A. M., 1972, Disposition and role of newly synthesized amines in central catecholaminergic neurons, in “Studies of Neurotransmitters at the Synaptic Level”, (E. Costa, L. L. Iversen and R. Paoletti, eds.), pp. 93–109, Raven Press, New York.Google Scholar
  14. Hall, Z. W., 1972, The storage, synthesis and inactivation of the transmitters acetylcholine, norepinephrine and gamma-aminobutyric acid, in “Structure and Function of Synapses”, (G. D. Pappas and D. P. Purpura, eds.), pp. 161–171, Raven Press, New York.Google Scholar
  15. Hammerstad, J. P., and Cutler, R. W. P., 1972, Sodium ion movements and the spontaneous and electrically stimulated release of [3H] GABA and [14C] glutamic acid from rat cortical slices, Brain Res. 47: 401.CrossRefGoogle Scholar
  16. Iversen, L. L., and Neal, M. J., 1968, The uptake of 3H-GABA by slices of rat cerebral cortex, J. Neurochem. 15: 1141.PubMedCrossRefGoogle Scholar
  17. Iversen, L. L., Mitchell, J. F., and Srinivasan, V., 1971, The release of γ-aminobutyric acid during inhibition in the cat visual cortex, J. Physiol. (Lond.) 212: 519.Google Scholar
  18. Kety, S. S., 1970, The biogenic amines in the central nervous system: their possible roles in arousal, emotion, and learning, in “The Neurosciences: Second Study Program”, (F. O. Schmitt, ed.), pp. 324–336, Rockefeller University Press, New YorkoGoogle Scholar
  19. Krnjevic, K., and Schwartz, S., 1967, The action of γ-aminobutyric acid on cortical neurons, Exp. Brain Res. 3: 320.PubMedCrossRefGoogle Scholar
  20. Krnjevic, K., and Schwartz, S., 1968, The inhibitory transmitter in the cerebral cortex, in “Structure and Function of Inhibitory Neuronal Mechanisms”, (C. von Euler, S. Skoglund and U. Soderberg, eds.), pp. 419–427, Pergamon Press, Oxford.Google Scholar
  21. Loo, Y. H., and Whittaker, V. P., 1967, Pyridoxal kinase in brain and its inhibition by pyridoxilidene-γ-phenylethylamine, J. Neurochem. 14: 997.PubMedCrossRefGoogle Scholar
  22. Mangan, J. L., and Whittaker, V. P., 1966, The distribution of free amino acids in subcellular fractions of guinea pig brain, Biochem. J. 98: 128.PubMedGoogle Scholar
  23. Medina, M. A., 1963, The in vivo effects of hydrazines and vitamin B6 on the metabolism of gamma-aminobutyric acid, J. Pharmac, Exp. Ther. 140: 133.Google Scholar
  24. Meldrum, B. S., and Horton, R. W., 1971, Convulsive effects of 4-deoxypyridoxine and of bicuculline in photosensitive baboons (Papio papio) and in rhesus monkeys (Macaca mulatta), Brain Res. 35: 419.PubMedCrossRefGoogle Scholar
  25. Minard, F. N., 1967, Relationships among pyridoxal phosphate, vitamin B6-deficiency, and convulsions induced by 1,1-dimethyl-hydrazine, J. Neu Tochem. 14: 681.Google Scholar
  26. Obata, K., and Takeda, K., 1969, Release of aminobutyric acid into the fourth ventricle induced by stimulation of the catfs cerebellum, J. Neurochem. 16: 1043.PubMedCrossRefGoogle Scholar
  27. Obata, K., Ito, M., Ochi, R., and Sato, N., 1967, Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of aminobutyric acid on Deiters neurons, Exp, Brain Res. 4: 43.CrossRefGoogle Scholar
  28. Otsuka, M., Obata, K., Miyata, Y., and Tanaka, Y., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central nervous system, J. Neurochem. 18: 287.PubMedCrossRefGoogle Scholar
  29. Perez de la Mora, M., and Tapia, R., 1973, Anticonvulsant effect of 5-ethyl, 5-phenyl, 2-pyrrolidinone and its possible relationship to γ-aminobutyric acid-dependent inhibitory mechanisms, Biochem. Pharmac. In press.Google Scholar
  30. Perez de la Mora, M., Feria-Velasco, A., and Tapia, R., 1973, Pyridoxal phosphate and glutamate decarboxylase in subcellular particles of mouse brain and their relationship to convulsions, J, Neurochem. In press.Google Scholar
  31. Roberts, E., and Matthysse, S., 1970, Neurochemistry: at the crossroads of neurobiology, Ann. Rev. Biochem. 39: 777.PubMedCrossRefGoogle Scholar
  32. Roberts, E., Baxter, C. F., van Harreveld, A., Wiersma, C. A. G., Adey, W. R., and Killam, K. F. (Eds.), 1960, “Inhibition in the Nervous System and Gamma — Aminobutyric Acid”, Pergamon Press, Oxford.Google Scholar
  33. Rodriguez de Lores Arnaiz, G., Alberici de Canal, M., and De Robertis, E., 1978, Alteration of GAB A system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid, J. Neurochem. 19: 1379.CrossRefGoogle Scholar
  34. Salganicoff, E., and De Robertis, E., 1965, Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain, J. Neurochem. 12: 287.PubMedCrossRefGoogle Scholar
  35. Spencer, W. A., and Kandel, E. R., 1969, Synaptic inhibition, in “Basic Mechanisms of the Epilepsies”, (H. H. Jasper, A. A. Ward and A. Pope, eds.), pp. 575–603, Little, Brown and Co., Boston.Google Scholar
  36. Srinivasan, V., Neal, M. J., and Mitchell, J. F., 1969, The effect of electrical stimulation and high potassium concentrations on the efflux of [3H] γ-aminobutyric acid from rat brain slices, J. Neurochem. 16: 1235.PubMedCrossRefGoogle Scholar
  37. Sze, P. Y., Kuriyama, K., and Roberts, E., 1971, Thiosemicar- bazide and γ-aminobutyric acid metabolism, Brain Res. 25: 387.PubMedCrossRefGoogle Scholar
  38. Tapia, R., and Awapara, J., 1967, Formation of γ-aminobutyric acid (GABA) in brain of mice treated with L-glutamic acid-γ-hydrazide and pyridoxal phosphate-γ-glutamyl hydrazone, Proc. Soc. Exp. Biol. Med. 126: 218.PubMedGoogle Scholar
  39. Tapia, R., and Awapara, J., 1969, Effects of various substituted hydrazones and hydrazines of pyridoxal-51-phosphate on brain glutamate decarboxylase, Biochem. Pharmac. 18: 145.CrossRefGoogle Scholar
  40. Tapia, R., and Pasantes, H., 1971, Relationships between pyridoxal phosphate availability, activity of vitamin B6-dependent enzymes and convulsions, Brain Res. 29: 111.PubMedCrossRefGoogle Scholar
  41. Tapia, R., Pérez de la Mora, M., and Massieu, G. H., 1967a, Modifications of brain glutamate decarboxylase activity by pyridoxal phosphate-γ-glutamyl hydrazone. Biochem. Pharmac. 16: 1211.CrossRefGoogle Scholar
  42. Tapia, R., Pasantes, H., Pérez de la Mora, M., Ortega, B. G., and Massieu, G. H., 1967b, Free amino acids and glutamate decarboxylase activity in brain of mice during drug-induced convulsions, Biochem. Pharmac. 16: 483.Google Scholar
  43. Tapia, R., Pérez de la Mora, M., and Massieu, G. H., 1969, Correlative changes of pyridoxal kinase, pyridoxal-51-phosphate and glutamate decarboxylase in brain, during drug-induced convulsions, Ann. N. Y. Acad. Sci. 166: 257.PubMedCrossRefGoogle Scholar
  44. Thierry, A. M., Blanc, G., and Glowinski, J., 1971, Effect of stress on the disposition of catecholamines localized in various intraneural storage forms in the brain stem of the rat, J. Neurochem. 18: 449.PubMedCrossRefGoogle Scholar
  45. Tower, D. B., 1969, Neurochemical mechanisms, in “Basic Mechanisms of the Epilepsies”, (H. H. Jasper, A. A. Ward and A. Pope, eds.), pp. 611–638, Little, Brown and Co., Boston.Google Scholar
  46. Utley, J. D., 1963, The effects of anthranilic hydroxamic acid on rat behaviour and rat brain γ-aminobutyric acid, norepinephrine and 5-hydroxytryptamine concentrations, J. Neurochem. 10: 423.PubMedCrossRefGoogle Scholar
  47. van Kempen, G. M. J., van den Berg, C. J., van der Helm, H. J., and Veldstra, H., 1965, Intracellular localization of glutamate decarboxylase, aminobutyrate transaminase and some other enzymes in brain tissue, J. Neurochem. 12: 581.PubMedCrossRefGoogle Scholar
  48. von Euler, C., Skoglund, S., and Soderberg, U. (Eds.), 1968, “Structure and Function of Inhibitory Neuronal Mechanisms”, Pergamon Press, Oxford.Google Scholar
  49. Wood, J. D., and Abrahams, D. E., 1971, The comparative effects of various hydrazides on γ-aminobutyric acid and its metabolism, J. Neurochem, 18: 1017.PubMedCrossRefGoogle Scholar
  50. Wood, J. D., and Peesker, S. J., 1972, A correlation between changes in GABA metabolism and isonicotinic acid hydrazide-induced seizures, Brain Res. 45: 489.PubMedCrossRefGoogle Scholar
  51. Wood, J. D., Watson, W. J., and Stacey, N. E., 1966, A comparative study of hypeibaric oxygen-induced and drug-induced convulsions with particular reference to γ-aminobutyric acid metabolism, J. Neurochem. 13: 361.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Ricardo Tapia
    • 1
  1. 1.Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMéxico 20, D. F.México

Personalised recommendations