Noradrenergic Reward Mechanisms, Recovery of Function, and Schizophrenia

  • Larry Stein
  • C. David Wise
  • Barry D. Berger
Part of the Advances in Behavioral Biology book series (ABBI, volume 4)


Over the past two decades, research findings in many different fields have resulted in the identification of central monoamine systems tentatively associated with reward and punishment. While the reward system has been characterized as mainly noradrenergic (Stein, 1967, 1968; Wise and Stein, 1969), the punishment system appears to be at least partially serotonergic (Wise, Berger and Stein, 1970, in press, a). Recent histochemical work suggests that noradrenergic neurons may be organized into two ascending systems: a dorsal pathway originating in the locus coeruleus which mainly innervates the cerebral cortex and hippocampus, and a ventral pathway originating in the reticular formation of the lower brain stem which mainly innervates the hypothalamus and ventral parts of the limbic system (Fuxe, Hökfelt and Ungerstedt, 1970). Both pathways appear to mediate rewarding effects (Ritter and Stein, 1972; Arbuthnott, Fuxe and Ungerstedt, 1971), but their differential distribution suggests different functions: the ventral branch may mainly regulate motivational activities, whereas the dorsal branch may mainly regulate cognitive activities (Stein and Wise, 1971).


Locus Coeruleus Noradrenergic Neuron Medial Forebrain Bundle Schizoid Disorder Intraventricular Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. N. 1972. Stein and Wise theory of schizophrenia: A possible mechanism for 6-hydroxydopamine formation in vivo. Behav. Biol., in press.Google Scholar
  2. Arbuthnott, G., Fuxe, K. and Ungerstedt, U. 1971. Central cate-cholamine turnover and self-stimulation behavior. Brain Res., 27, 406–413.CrossRefGoogle Scholar
  3. Bazelon, M., Fenichel, G. M. and Randall, J. 1967. Studies on neuromelanin I. A melanin system in the human adult brainstem. Neurology, 17, 512–519.CrossRefGoogle Scholar
  4. Berger, B. D., Wise, C. D. and Stein, L. 1971. Norepinephrine: Reversal of anorexia in rats with lateral hypothalamic damage. Science, 172, 281–284.CrossRefGoogle Scholar
  5. Bleuler, E. 1950. Dementia Praecox, or the Group of Schizophrenias, International Universities Press, New York.Google Scholar
  6. Bloom, F. E., Algeri, S., Groppetti, A., Revuelta, A. and Costa, E. 1969. Lesions of central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure. Science, 166, 1284–1286.CrossRefGoogle Scholar
  7. Breese, G. R., Howard, J. L. and Leahy, J. P. 1971. Effect of 6-hydroxydopamine on electrical self-stimulation of the brain. Brit. J. Pharmacol., 43, 252–257.Google Scholar
  8. Brodie, B. B., and Shore, P. A. 1957. A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N. Y. Acad. Sci., 66, 631–642.CrossRefGoogle Scholar
  9. Cotzias, G. C, Papavasiliou, P. S., Van Woert, M. H. and Sakamoto, A. 1964. Melanogenesis and extrapyramidal diseases. Fed. Proc.,23, 713–718.Google Scholar
  10. Dahlström, A. and Fuxe, K. 1965. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, Supp. 232, 1–55.Google Scholar
  11. Dastur, D. K. 1959. The pathology of schizophrenia. A.M.A. Arch.Neurol. Psychiat., 81, 83–96.Google Scholar
  12. Fenichel, G. M. and Bazelon, M. 1968. Studies on neuromelanin II. Melanin in the brainstems of infants and children. Neurology, 18, 817–820.CrossRefGoogle Scholar
  13. Freud, S. 1924. A General Introduction to Psychoanalysis ( J. Riviere) Boni & Liveright, London.Google Scholar
  14. Friedhoff, A. J. and van Winkle, E. 1962. Isolation and characterization of a compound from the urine of schizophrenics. Nature, 194, 897–899.CrossRefGoogle Scholar
  15. Fuxe, K., Hökfelt, T., and Ungerstedt, U. 1970. Morphological and functional aspects of central monoamine neurons. Int. Rev. Neurobiol., 13, 93–126.Google Scholar
  16. Geller, I. and Seifter, J. 1960. The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia (Berlin) 1, 482–492.CrossRefGoogle Scholar
  17. Gottlieb, J. S., Frohman, C. E. and Beckett, P. G. S. 1971. The current status of the α-2-globulin in schizophrenia. In Biochemistry, Schizophrenias and Affective Illness, Himwich, H.E. (Ed.), Williams and Wilkins, Baltimore, pp. 153–170.Google Scholar
  18. Greiner, A. C. and Nicolson, G. A. 1965. Schizophrenia-Melanosis. Lancet, 2, 1165–1167.CrossRefGoogle Scholar
  19. Grossman, S. P. 1960. Eating or drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science, 132, 301–302.CrossRefGoogle Scholar
  20. Grossman, S.P. 1968. Hypothalamic and limbic influences on food intake. Fed. Proc., 27, 1349–1360.Google Scholar
  21. Heath, R. G. and Mickle, W.A. 1960. Evaluation of seven years’ experience with depth electrode studies in human patients. In Electrical Studies on the Unanesthetized Brain, Ramey, E.R. and O’Doherty, D.S. (Eds.), p. 214, Hoeber, New York.Google Scholar
  22. Heston, L.L. 1970. The genetics of schizophrenic and schizoid disease. Science, 167, 249–256.Google Scholar
  23. Hoebel, B. G. 1971. Feeding: Neural control of intake. Ann. Rev. Physiol., 33, 533–568.CrossRefGoogle Scholar
  24. Hoffer, A. and Osmund, H. 1959. The adrenochrome model and schizophrenia, J. Nerv. Ment. Dis., 128, 18–35.Google Scholar
  25. Hollister, L.E. 1968. Chemical Psychoses. Thomas, Springfield, 111.Google Scholar
  26. Kallman, F. J. 1938. The Genetics of Schizophrenia. Augustin, New York.Google Scholar
  27. Kallman, F. J. 1946. The genetic theory of schizophrenia: an analysis of 691 schizophrenic twin index families. Am. J. Psychiat., 103, 309–322.Google Scholar
  28. Karki, N., Kuntzman, R., and Brodie, B. B. 1962. Storage, synthesis and metabolism of monoamines in the developing brain. J. Neurochem., 9, 53–58.CrossRefGoogle Scholar
  29. Karlsson, J.L. 1966. The Biological Basis of Schizophrenia. Thomas, Springfield, 111.Google Scholar
  30. Kaufman, S. and Friedman, S. 1965. Dopamine-β-hydroxylase. Pharmacol. Rev., 17, 71–100.Google Scholar
  31. Kety, S.S., Rosenthal, D., Wender, P.H. and Schulsinger, F. 1968. The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. In The Transmission of Schizophrenia, Rosenthal, D. and Kety, S.S. (Eds.), pp. 345–362, Pergamon Press, New York.Google Scholar
  32. Kraepelin, E. 1907. Introduction ála psychiatrie clinique, translated from the second German edition by A. Devaux and P. Merklen. Vigot freves, Paris.Google Scholar
  33. Levin, E. Y. and Kaufman, S. 1961. Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenethylamine to norepine—phrine. J-Biol.Chem., 236, 2043–2049.Google Scholar
  34. Lillie, R.D. 1965. Histopathologic technic and practical histo-chemistry. McGraw-Hill, New York.Google Scholar
  35. Mandell, A.J., Segal, D.S., Kuczenski, R.T. and Knapp, S. 1972. Some macromolecular mechanisms in CNS neurotransmitter pharmacology and their psychobiological organization. This volume.Google Scholar
  36. Meehl, P. E. 1962. Schizotaxia, schizotypy, schizophrenia. Am.Psychol., 17, 827–838.CrossRefGoogle Scholar
  37. Mowrer, O.H. 1960. Learning Theory and Behavior. Wiley, New York.CrossRefGoogle Scholar
  38. Olds, J. 1962. Hypothalamic substrates of reward. Physiol. Revs., 42, 554–604.Google Scholar
  39. Osmond, H. and Smythies, J.R. 1952. Schizophrenia: A new approach. J. Ment. Sci., 98, 309–315.Google Scholar
  40. Porter, C.C., Totaro, J.A., and Stone, C.A. 1963. Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J. Pharmacol. Exptl.Therap., 140, 308–316.Google Scholar
  41. Rado, S. 1964. Hedonic self-regulation of the organism. In The Role of Pleasure in Behavior, Heath, R.D. (Ed.), p. 257, Hoeber, New York.Google Scholar
  42. Ritter, S. and Stein, L. 1972. Self-stimulation of the locus coeruleus. Fed. Proc., 31, 820.Google Scholar
  43. Saner, A. and Thoenen, H. 1971. Contributions to the molecular mechanism of action of 6-hydroxydopamine. In 6-Hydroxydopamine and Catecholamine Neurons, Malmfors, T. and Thoenen, H. (Eds.), pp. 265–275, North-Holland Publishing Co., Amsterdam.Google Scholar
  44. Sem-Jacobsen, C.W. and Torkildsen, A. 1960. Depth recording and electrical stimulation in the human brain. In Electrical Studies on the Unanesthetized Brain, Ramey, E.R. and O’Doherty, D.S. (Eds.), p. 275, Hoeber, New York.Google Scholar
  45. Senoh, S., Creveling, C.R., Udenfriend, S. and Witkop, B. 1959. Chemical enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J. Am. Chem. Soc., 81, 6236–6240.CrossRefGoogle Scholar
  46. Sharpless, S.K. 1969. Isolated and deafferented neurons: Disuse supersensitivity. In Basic Mechanisms of the Epilepsies. Jasper, H.H., Ward, Jr., A.A. and Pope, A. (Eds.), pp. 329–348, Little, Brown, Boston.Google Scholar
  47. Shulgin, S.T., Sargent, T. and Naranjo, C. 1969. Structure-activity relationships of one-ring psychotomimetics. Nature, 221, 537–541.CrossRefGoogle Scholar
  48. Smith, K., Thompson, G.F., and Koster, H.D. 1969. Sweat in schizophrenic patients: Identification of the odorous substance. Science, 166, 398–400.CrossRefGoogle Scholar
  49. Stein, L. 1964a. Self-stimulation of the brain and the central stimulation action of amphetamine. Fed. Proc., 23, 836–850.Google Scholar
  50. Stein, L. 1964b. Reciprocal action of reward and punishment mechanisms. In The Role of Pleasure in Behavior, Heath, R.G. (Ed.), pp. 113–139, Hoeber, New York.Google Scholar
  51. Stein, L. 1967. Psychopharmacological substrates of mental depression. In Antidepressant Drugs, Garattini, S. and Dukes, N.M.G. (Eds.), p. 130–140. Excerpta Medica Foundation, Amsterdam.Google Scholar
  52. Stein, L. 1968. Chemistry of reward and punishment. In Psycho-pharmacology: A Review of Progress, 1957–1967, Efron, D. H. (Ed.), pp. 105–123, U.S. Government Printing Office, Washington.Google Scholar
  53. Stein, L. 1971. Neurochemistry of reward and punishment: some implications for the etiology of schizophrenia. J. Psychiat.Res., 8, 345–361.CrossRefGoogle Scholar
  54. Stein, L. and Wise, C.D. 1969. Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine. J. Comp. Physiol. Psychol., 67, 189–198.CrossRefGoogle Scholar
  55. Stein, L. and Wise, C. D. 1971. Possible etiology of schizophrenia: Progressive damage of the noradrenergic reward mechanism by 6-hydroxydopamine. Science, 171, 1032–1036.CrossRefGoogle Scholar
  56. Stein, L. and Wise, C. D. 1972. 6-Hydroxydopamine, noradrenergic reward, and schizophrenia. Science, 175, 922–923.Google Scholar
  57. Stein, L., Wise, C.D. and Berger, B. D. Antianxiety action of benzodiazepines: Decrease in activity of serotonin neurons in the punishment system. In Benzodiazepines. Garattini, S. (Ed.), Raven Press, New York, In press.Google Scholar
  58. Teitelbaum, P. 1971. The encephalization of hunger. In Progress in Physiological Psychology, Stellar, E. and Sprague, J.M. (Eds.), Academic Press, New York, pp. 319–350.Google Scholar
  59. Teitelbaum, P., Cheng, M.F. and Rozin, P. 1969. Development of feeding parallels its recovery after hypothalamic damage. J.Comp. Physiol. Psychol., 67, 430–441.CrossRefGoogle Scholar
  60. Teitelbaum, P. and Epstein, A.N. 1962. The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev., 69, 74–90.CrossRefGoogle Scholar
  61. Thudichum, J.W.L. 1884. A Treatise on the Chemical Constitutionof the Brain. Balliere, Tindall, and Cox, London.Google Scholar
  62. Uretsky, N. J. and Iversen, L.L. 1969. Effects of 6-hydroxydopamine on noradrenaline-containing neurons in the rat brain. Nature, 221, 557–559.CrossRefGoogle Scholar
  63. Wende, C.V. and Spoerlein, M.T. 1963. Oxidation of dopamine to melanin by an enzyme of rat brain. Life Sci., 6, 386–392.CrossRefGoogle Scholar
  64. Wise, C.D., Berger, B.D., and Stein, L. 1970. Serotonin: A possible mediator of behavioral suppression induced by anxiety. Dis. Nerv. Sys., GWAN Supp. 31, 34–37.Google Scholar
  65. Wise, CD., Berger, B.D. and Stein, L. α-Noradrenergic receptors for reward and serotonergic receptors for punishment in the rat brain. Biol. Psychiat., in press, a.Google Scholar
  66. Wise, CD., Berger, B.D. and Stein, L. Benzodiazepines: Anti-anxiety activity by reduction of serotonin turnover in the brain. Science, in press, b.Google Scholar
  67. Wise, C.D. and Stein, L. 1969. Facilitation of brain self-stimulation by central administration of norepinephrine. Science, 163, 299–301.CrossRefGoogle Scholar
  68. Wise, CD. and Stein, L. 1970. Increased biosynthesis and utilization of norepinephrine during self-stimulation of the brain. Fed. Proc., 29, 485.Google Scholar
  69. Wishner, J. 1965. Efficiency in schizophrenia. Bulletin de1’association Inter. de Psychologie Appliquée, 14, 30–46.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Larry Stein
    • 1
  • C. David Wise
    • 1
  • Barry D. Berger
    • 1
  1. 1.Wyeth LaboratoriesPhiladelphiaUSA

Personalised recommendations