Brain Catecholamines, Affective States and Memory

  • Seymour Kety
Part of the Advances in Behavioral Biology book series (ABBI, volume 4)


Those who have been concerned with designs for the human brain have come to realize that it is not enough to incorporate mechanisms for the reception and processing of sensory information, its storage and retrieval, and the programming and regulation of motor output. Adaptive behavior, by its very nature, requires a system for the evaluation and sorting of environmental inputs, and the development of the most appropriate and effective responses in terms of the survival of the individual or the species.


Affective State Biogenic Amine Cerebellar Cortex Apical Dendrite Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden, N.E., Fuxe, F. and Larsson, K. 1966. Effect of large mesencephalic-diencephalic lesions on the noradrenaline, dopamine and 5-hydroxytryptamine neurons of the central nervous system. Experientia, 22, 842–847.CrossRefGoogle Scholar
  2. Anden, N.-E., Fuxe, F., and Ungerstedt, U. 1967. A quantititative study on the nigro-neostriatal dopamine neuron system in rat. Acta Physiol. Scand., 67, 306–312, 1967.CrossRefGoogle Scholar
  3. Arbuthnott, G., Fuxe, K., and Ungerstedt, U. 1971. Cerebral catecholamine turnover and self-stimulation behavior. Brain Res., 27, 406–413.CrossRefGoogle Scholar
  4. Azmitia, E.C., Jr. and McEwen, B.S. 1969. Corticosterone regulation of tryptophan hydroxylase in midbrain of the rat. Science, 166, 1274–1276.CrossRefGoogle Scholar
  5. Barondes, S. H. Personal communication.Google Scholar
  6. Barondes, S.H. and Cohen, H.D. 1968. Arousal and the conversion of “short-term” to “long-term” memory. Proc. Nat. Acad. Sci., 61, 923–929.CrossRefGoogle Scholar
  7. Bignami, G., Robustelli, F., Janku, I. and Bovet, D. 1965. Psychopharmacologie, C.R. Acad. Sci. (Paris), 260, 4273–4278.Google Scholar
  8. Blakstad, T., Fuxe, K. and Hökfelt, T. 1967. Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Z. Zellforsch., 76, 463–473.CrossRefGoogle Scholar
  9. Carlsson, A., Lindqvist, M. and Magnusson, T. 1957. 3,4-dihydroxy-phenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180, 1200.CrossRefGoogle Scholar
  10. Chamberlain, T.J., Rothschild, G.H. and Gerard, R.W. 1963. Drugs affecting RNA and learning. Proc. Nat. Acad. Sci. 49, 918–924.CrossRefGoogle Scholar
  11. Chamberlain, T.J., Halick, P. and Gerard, R.W. 1963. Fixation of experience in the rat spinal cord. J. Neurophysiology, 26, 662–673.Google Scholar
  12. Dahlström, A. and Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand., 64 (suppl. 247), 5–36.Google Scholar
  13. De Wied, D. 1969. Effects of peptide hormones on behavior. In: Frontiers in Neuroendocrinology, ed. by W.F. Ganong and L. Martini. Oxford University Press.Google Scholar
  14. DiCara, L.V. and Miller, N.E. 1968. Instrument learning of vaso-motor responses by rats: Learning to respond differentially in the two ears. Science, 159, 1485–1486.CrossRefGoogle Scholar
  15. Dismukes, R.K. and Rake, A. Cited in Roberts et al. 1970.Google Scholar
  16. Droz, B. and Barondes, S.H. 1969. Nerve endings: Rapid appearance of labelled protein shown by electron microscope radioautography. Science, 165, 1131–1133.CrossRefGoogle Scholar
  17. Eränkö, O. 1956. Histochemical demonstration of noradrenaline in the adrenal medulla of the hamster. J. Histochem. Cytochem., 4. 11–13.CrossRefGoogle Scholar
  18. Essman, W.B. Personal communication.Google Scholar
  19. Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta Physiol. Scand., 64 (Suppl. 247), 37–85.Google Scholar
  20. Fuxe, K., Hamberger, B. and Hökfelt, T. 1968. Distribution of noradrenaline nerve terminals in cortical areas of the rat. BrainRes., 8, 125–131.Google Scholar
  21. Fuxe, K. and Hanson, L.C.F. 1967. Central catecholamine neurons and conditioned avoidance behavior. Psychopharmacologia, 11, 439–447.CrossRefGoogle Scholar
  22. Gershon, E.S., Bunney, W.E., Jr., Goodwin, F.K., Murphy, D.L., Dunner, D.L. and Henry, G.M. 1971. Catecholamines and affective illness: Studies with L-DOPA and alpha-methyl-para-tyrosine. In: Ho, B.T. and Mclsaac, W.M., Brain Chemistry and Mental Disease, Plenum Press, New York., pp. 135–162.CrossRefGoogle Scholar
  23. Glowinski, J. and Axelrod, J. 1965. The effect of drugs on the uptake, release and metabolism of H3-norepinephrine in the rat brain. J. Pharmacol., 149, 43–49.Google Scholar
  24. Herman, Z.S. 1970. The effects of noradrenaline on rat’s behavior. Psychopharmacologia, 16, 369–374.CrossRefGoogle Scholar
  25. Hillarp, N.-A., Fuxe, K. and Dahlström, A. 1966. Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca. Pharmacol. Rev., 18, 727–741.Google Scholar
  26. Hokin, M.R. 1969. Effect of norepinephrine on 32p incorporation into individual phosphatides in slices from different areas of the guinea pig brain. J. Neurochem., 16, 127–134.CrossRefGoogle Scholar
  27. Kety, S.S. 1971. The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In: The Neurosciences: Second Study Program. Schmitt, F.O. (Ed.). The Rockefeller University Press, New York, pp. 324–336.Google Scholar
  28. Kety, S.S., Javoy, F., Thierry, A.-M., Julou, L. and Glowinski, J. 1967. A sustained effect of electroconvulsive shock on the turn-over of norepinephrine in the central nervous system of the rat. Proc Nat Acad. Sci., 58, 1249–1254.CrossRefGoogle Scholar
  29. Leibowitz, S.F. 1970. Reciprocal hunger-related circuits involving alpha-and beta-adrenergic receptors located, respectively, in the ventromedial and lateral hypothalamus. Proc. Nat. Acad. Sci., 67, 1063–1070.CrossRefGoogle Scholar
  30. Levine, S. and Brush, F.R. 1967. Adrenocortical activity and avoidance learning as a function of time after avoidance training. Physiol. Behav., 2, 385–388.CrossRefGoogle Scholar
  31. Libet, B. and Tosaka, T. 1970. Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: A different mode of synaptic action. Proc. Nat. Acad. Sci., 67, 667–673.CrossRefGoogle Scholar
  32. Mandell, A.J. and Spooner, C.E. 1968. Psychochemical research studies in man. Science, 162, 1442–1453.CrossRefGoogle Scholar
  33. Marr, D. 1969. A theory of cerebellar cortex. J. Physiol., 202, 437–470.Google Scholar
  34. McNew, J.J. and Thompson, R. 1966. Role of the limbic system in active and passive avoidance conditioning in the rat. J. Comp.Physiol. Psychol., 61, 173–180.CrossRefGoogle Scholar
  35. Miller, N.E. and DiCara, L. 1967. Instrumental learning of heart rate changes in curarized rats: shaping and specificity to discriminative stimulus. J. Comp. Physiol. Psychol., 63, 12–19.CrossRefGoogle Scholar
  36. Miyamoto, E., Kuo, J.F. and Greengard, P. 1969. Cyclic nucleo-tide-dependent protein kinase. III. Purification and properties of adenosine 3′5′-monophosphate-dependent protein kinase from bovine brain. J. Biol. Chem., 244, 6395–6408.Google Scholar
  37. Musacchio, J.M., Julou, L., Kety, S.S. and Glowinski, J. 1969. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Nat. Acad. Sci., 63, 1117–1119.CrossRefGoogle Scholar
  38. Oliverio, A. 1968. Neurohumoral systems and learning. In: Psychopharmacology: A Review of Progress, 1957–1967, USPHS Pub. No. 1836, U.S. Government Printing Office, pp. 867-878.Google Scholar
  39. Palmer, G.C., Davenport, G.R. and Ward, J.W. 1970. The effect of neurohumoral drugs on the fixation of spinal reflexes and the incorporation of uridine into the spinal cord. Psychopharmacologia, 17, 59–69.CrossRefGoogle Scholar
  40. Randt, C.T., Quartermain, D., Goldstein, M. and Anagnoste, B. 1971. Norepinephrine biosynthesis inhibition: Effects on memory in mice. Science, 172, 498–499.CrossRefGoogle Scholar
  41. Reis, D.J. and Fuxe, K. 1969. Brain norepinephrine: Evidence that neuronal release is essential for sham rage behavior following brainstem transection in cat. Proc. Nat. Acad. Sci., 64, 108–112.CrossRefGoogle Scholar
  42. Reis, D.J. and Gunne, L.-M. 1965. Brain catecholamines: Relation to the defense reaction evoked by amygdaloid stimulation in cat. Science, 149, 450–451.CrossRefGoogle Scholar
  43. Reivich, M. and Glowinski, J. 1967. An autoradiographic study of the distribution of C14-norepinephrine in the brain of the rat. Brain, 90, 633–646.CrossRefGoogle Scholar
  44. Roberts, R.B., Flexner, J.B. and Flexner, L.B. 1970. Some evidence for the involvement of adrenergic sites in the memory trace. Proc. Nat. Acad. Sci., 66, 310–313.CrossRefGoogle Scholar
  45. Scheibel, M.E. and Scheibel, A.B. 1967. Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res. 6 60–94.CrossRefGoogle Scholar
  46. Schildkraut, J. Personal communication.Google Scholar
  47. Schildkraut, J.J. and Kety, S.S. 1967. Biogenic amines and emotion. Science, 156, 21–30.CrossRefGoogle Scholar
  48. Segal, D.S. and Mandell, A.J. 1970. Behavioral activation of rats during intraventricular infusion of norepinephrine. Proc. Nat. Acad. Sci., 66, 289–293.CrossRefGoogle Scholar
  49. Sheard, M.H., Appel, J.B. and Freedman, D.X. 1967. The effect of central nervous system lesions on brain monoamines and behavior. J. Psychiat. Res., 5, 237–242.CrossRefGoogle Scholar
  50. Siggins, G.R., Hoffer, B.J. and Bloom, F.E. 1969. Cyclic adenosine monophosphate: Possible mediator for norepinephrine effects of cerebellar Purkinje cells. Science, 165, 1018–1020.CrossRefGoogle Scholar
  51. Slangen, J.L. and Miller, N.E. 1969. Pharmacological tests for the function of hypothalamic norepinephrine in eating behavior. Physiol. Behav. 4, 543–552.CrossRefGoogle Scholar
  52. Snedden, J.M. and Keen, P. 1970. The effect of noradrenaline on the incorporation of 32p into brain phospholipids. Biochem.Pharmacol. 19, 1297–1306, 1970.CrossRefGoogle Scholar
  53. Stein, L. 1972. Noradrenergic reward mechanisms, recovery of function and Schizophrenia. In press, this volume. Stein, L. and Wise, CD. 1970. Mechanisms of the facilitating effects of amphetamine on behavior. In D.H. Efron, (ed.), Psychotomimetic Drugs, Raven Press, pp. 123-145.Google Scholar
  54. Taylor, K.M. and Snyder, S.H. 1971. Differential effects of and 1-amphetamine on behavior and on catecholamine disposition in dopamine and norepinephrine containing neurons of rat brain. Brain Res., 28, 295–309.CrossRefGoogle Scholar
  55. Thierry, A.-M, Javoy, F., Glowinski, J. and Kety, S.S. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. J. Pharmacol. Exp. Ther., 163, 163–171.Google Scholar
  56. Trowill, J.L. 1967. Instrumental conditioning of the heart rate in the curarized rat. J. Comp. Physiol. Psychol., 63, 12–19.CrossRefGoogle Scholar
  57. Vogt, M. 1954. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol., 123, 451–481.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Seymour Kety
    • 1
    • 2
  1. 1.Harvard Medical SchoolUSA
  2. 2.Massachusetts General HospitalUSA

Personalised recommendations