Effects of Drugs on Catecholamine Synthesis

  • Irwin J. Kopin
Part of the Advances in Behavioral Biology book series (ABBI, volume 1)


Although the exact role of catecholamines in brain function is not clearly established, it is becoming increasingly evident that dopamine and norepinephrine do play important roles in control of movement, in determining affective state and alertness, and in neuroendocrine relationships. Utilization of catecholamines by neurons is associated with increased rates of synthesis, so that levels of the amines are altered only slightly compared to changes in their rates of utilization and replacement. Estimates of synthesis rates may, therefore, be more useful than determination of catecholamine levels in assessing changes in neuronal function.


Tyrosine Hydroxylase Catecholamine Synthesis Private Capacity Storage Vesicle Phenyl Ethanolamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J., and Kopin, I. J. 1969. Uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. In Progress in Brain Research, vol. 31. K. Akert and P. G. Waser. Amsterdam: Elsevier Publishing Company, p. 21.Google Scholar
  2. Carlsson, A., and Lindqvist, M. 1963. In vivo decarboxylation of α-methy 1-dopa and α-methyl-metatyrosine. Acta Pharmacol. Toxicol. 20:140.CrossRefGoogle Scholar
  3. Colburn, R. W.; Goodwin, F. K.; Bunney, W. E.; and Davis, J. M. 1967. Effect of lithium on the uptake of noradrenaline by synap-tosomes. Nature 215:1395.PubMedCrossRefGoogle Scholar
  4. Corridi, H.; Fuxe, K.; Hökfelt, T.; and Schou, M. 1967. Effect of lithium on cerebral monoamine neurones. Psychopharmacology 11:345.CrossRefGoogle Scholar
  5. Costa, E., and Neff, N. H. 1966. Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis. In Biochem-istry and Pharmacology of the Basal Ganglia. E. Costa, L. J. Cote, and M. D. Yahr (eds.). New York: Rover Press, p. 141.Google Scholar
  6. Ikeda, M.; Fahien, L. A.; and Udenfriend, S. 1966. A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol. Chem. 241:4452.PubMedGoogle Scholar
  7. Katz, R. I.; Chase, T. N.; and Kopin, I. J. 1968. Evoked release of norepinephrine and serotonin from brain slices. Inhibition by lithium. Science 162:466.PubMedCrossRefGoogle Scholar
  8. Kaufman, S., and Friedman, S. 1965. Dopamine-β-hydroxylase. Phar-macol. Rev. 17:71.Google Scholar
  9. Kirshner, N.; Rorie, N.; and Kamin, D. L. 1963. Inhibition of dopamine uptake in vitro by reserpine administration in vivo. J. Pkamacol. Exp. Ther. 141:285.Google Scholar
  10. Kopin, I. J.; Weise, V. K.; and Sedvall, G. C. 1969. Effect of false transmitters on norepinephrine synthesis. J. Pharmacol. Exp. Ther. 170:246.PubMedGoogle Scholar
  11. Laverty, R., and Sharman, D. F. 1965. Modification by drugs on the metabolism of 3,4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Brit. J. Pharmacol. 24:759.PubMedGoogle Scholar
  12. Levitt, M.; Spector, S.; Sjoerdsma, A.; and Udenfriend, S. 1965. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart. J. Pharmacol. Exp. Ther. 148:1.PubMedGoogle Scholar
  13. Lovenberg, W.; Weissbach, H.; and Udenfriend, S. 1962. Aromatic L-amino acid decarboxylase. J. Biol.Chem. 237:89.PubMedGoogle Scholar
  14. Merritt, J. H.; Schultz, E. J.; and Wykes, A. A. 1964. Effect of decaborane on the norepinephrine content of rat brain. Biochem. Pharmacol. 13:1364.PubMedCrossRefGoogle Scholar
  15. Musacchio, J. M.; Weise, V. K.; and Kopin, I. J. 1967. Mechanism of norepinephrine binding. Nature 205:606.CrossRefGoogle Scholar
  16. Sourkes, T. L. 1954. Inhibition of dihydroxyphenylalanine decarboxylase by derivatives of Phenylalanine. Arch. Biochem. Biophys. 51:444.PubMedCrossRefGoogle Scholar
  17. Thoenen, H.; Mueller, R. A.; and Axelrod, J. 1969. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pkamacol. Exp. Ther. 169:249.Google Scholar
  18. Udenfriend, S.; Zaltzman-Nirenberg, P.; and Nagatsu, T. 1965. Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem. Pharmacol. 14:837.PubMedCrossRefGoogle Scholar
  19. Viveros, O. H.; Arqueros, L.; Connett, R. J.; and Kirshner, N. 1969. Mechanism of secretion from the adrenal medulla. Studies of dopa-mine-β-hydroxylase as a marker for catecholamine storage vesicle membranes in rabbit adrenal glands. Molec. Pharmacol. 5:60.Google Scholar
  20. Weiner, N. 1970. Regulation of norepinephrine biosynthesis. Ann. Rev. Pharmacol. 10:273.PubMedCrossRefGoogle Scholar
  21. Weiner, N., and Selvaratnam, I. 1968. The effect of tyramine on the synthesis of norepinephrine. J. Pharmacol. Exp. Ther. 161:21.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Irwin J. Kopin
    • 1
  1. 1.Laboratory of Clinical ScienceNational Institute of Mental HealthBethesdaUSA

Personalised recommendations