Advertisement

Regulation of Catecholamine Biosynthesis: Tyrosine Hydroxylase and Dihydropteridine Reductase

  • José M. Musacchio
Part of the Advances in Behavioral Biology book series (ABBI, volume 1)

Abstract

It is generally accepted that catecholamines have an important role in the regulation of several brain functions, and there is increasing evidence that they may be involved in the development of certain affective disorders. Most of the agents used in the treatment for depression and mania are known to affect either the synthesis, storage, and release of catecholamines or the central adrenergic receptors. These brief considerations are sufficient to justify an examination of the enzymes that are considered important for the regulation of catecholamine biosynthesis.

Keywords

Tyrosine Hydroxylase Adrenal Medulla Tritiated Water Chromaffin Granule Catecholamine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alousi, A., and Weiner, N. 1966. The regulation of norepinephrine synthesis in sympathetic nerves: Effect of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc. Nat. Acad. Sci. 56:1491.PubMedCrossRefGoogle Scholar
  2. Besson, M. J., Cheramy, A.; Musacchio, J. M.; and Glowinski, J. In preparation.Google Scholar
  3. Brenneman, A. R., and Kaufman, S. 1964. The role of tetrahydropter-idines in the enzymatic conversion of tyrosine to 3,4-dihydroxy-phenylalanine. Biochem. Biophys. Res. Commun. 17:177.CrossRefGoogle Scholar
  4. Bygdeman, S., and von Euler, U. S. 1958. Resynthesis of catechol hormones in the cat’s adrenal medulla. Acta Physiol. Scand. 44:375.PubMedCrossRefGoogle Scholar
  5. de Duve, C. 1964. Principles of tissue fractionation. J. Theor. Biol. 6:33.PubMedCrossRefGoogle Scholar
  6. von Euler, U. S., and Hellner-Björkman, S. 1955. Effect of increased adrenergic nerve activity on the content of noradrenaline and adrenaline in cat organs. Acta Physiol. Scand. 118:17.Google Scholar
  7. Goldstein, M.; Ohi, Y.; and Backstrom, T. 1970. The effect of ouabain on catecholamine biosynthesis in rat brain cortex slices. J. Pharmacol. Exp. Ther. 174:77.PubMedGoogle Scholar
  8. Gordon, R., Reid, J. V. O.; Sjoerdsma, A.; and Udenfriend, S. 1966. Increased synthesis of norepinephrine in the rat heart on electrical stimulation of the stellate ganglia. Molec. Pharmacol. 2:606.Google Scholar
  9. Hökfelt, B., and McLean, J. 1950. The adrenaline and noradrenaline content of the suprarenal glands of the rabbit under normal conditions and after various forms of stimulation. Acta Physiol. Scand. 21:258.PubMedCrossRefGoogle Scholar
  10. Holland, W. C., and Schümann, H. J. 1956. Formation of catechol amines during splanchnic stimulation of the adrenal gland of the cat. Brit. J. Pharmacol. 11:449.PubMedGoogle Scholar
  11. Ikeda, M.; Fahien, L. A.; and Udenfriend, S. 1966. A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol. Chem. 241:4452.PubMedGoogle Scholar
  12. Kopin, I. J.; Weise, V. K.; and Sedvall, G. C. 1969. Effect of false transmitters on norepinephrine synthesis. J. Pharmacol. Exp. Ther. 170:246.PubMedGoogle Scholar
  13. Laduron, P., and Belpaire, F. 1968. Tissue fractionation and cat-echolamines-II. Biochem. Pharmacol. 17:1127.PubMedCrossRefGoogle Scholar
  14. Levitt, M.; Spector, S.; Sjoerdsma, A.; and Udenfriend, S. 1965. Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther. 148:1.PubMedGoogle Scholar
  15. Lloyd, T. A. 1969. Isolation of tyrosine hydroxylase cofactor from bovine adrenal medulla and sheep brain. Fed. Proc. 28:873.Google Scholar
  16. Lloyd, T., and Weiner, N. 1970. Isolation and characterization of the tyrosine hydroxylase cofactor from bovine adrenal medulla. Pharmacologist 12:287.Google Scholar
  17. Mueller, R. A.; Thoenen, H.; and Axelrod, J. 1969. Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. Exp. Ther. 169:74.PubMedGoogle Scholar
  18. Musacchio, J. M. 1967. Subcellular distribution of adrenal tyrosine hydroxylase. Pharmacologist 9:210.Google Scholar
  19. Musacchio, J. M. 1968. Subcellular distribution of adrenal tyrosine hydroxylase. Biochem. Pharmacol. 17:1470.PubMedCrossRefGoogle Scholar
  20. Musacchio, J. M. 1969. Beef adrenal medulla dihydropteridine reductase. Biochem. Biophys. Acta 191:485.PubMedGoogle Scholar
  21. Musacchio, J. M., and Castellucci, L. B. 1969. Effect of adrenal medulla dihydropteridine reductase and tyrosine hydroxylase adrenal cofactor on DOPA formation. Pharmacologist 11:274.Google Scholar
  22. Musacchio, J. M.; Julou, L.; Kety, S. S.; and Glowinski, J. 1969. Increase in rat brain tyrosine hydroxylase activity produced by electroconvulsive shock. Proc. Nat. Acad. Sci. 63:1117.PubMedCrossRefGoogle Scholar
  23. Musacchio, J. M., and Weise, V. K. 1965. Effects of decentralization on norepinephrine biosynthesis from tyrosine, DOPA and dopamine. Pharmacologist 7:156.Google Scholar
  24. Musacchio, J. M.; Wurzburger, R. J.; and D’Angelo, G. L. 1971. Different molecular forms of bovine adrenal tyrosine hydroxylase. Molec. Pharmacol. 7:(#2), in press.Google Scholar
  25. Nagatsu, T.; Levitt, M.; and Udenfriend, S. 1964a. Conversion of L-tyrosine to 3,4-dihydroxyphenylalanine by cell-free preparation of brain and sympathetically innervated tissues. Biochem. Biophys. Res. Commun. 14:543.PubMedCrossRefGoogle Scholar
  26. Nagatsu, T.; Levitt, M.; and Udenfriend, S. 1964b. Tyrosine hydroxylase: The initial step in norepinephrine biosynthesis. J. Biol. Chem. 239:2910.PubMedGoogle Scholar
  27. Neff, V. H., and Costa, E. 1966. The influence of monoamine oxidase inhibition on catecholamine synthesis. Life Sci. 5:951.PubMedCrossRefGoogle Scholar
  28. Oliverio, A., and Stjärne, L. A. 1965. Acceleration of noradrenaline turnover in the mouse heart by cold exposure.Life Sci. 4:2339.PubMedCrossRefGoogle Scholar
  29. Petrack, B.; Sheppy, F.; and Fetzer, V. 1968. Studies on tyrosine hydroxylase from bovine adrenal medulla. J. Biol. Chem. 243:743.PubMedGoogle Scholar
  30. Sage, H. J.; Smith, W. J.; and Kirshner, N. 1967. Mechanism of secretion from the adrenal medulla. Molec. Pharmacol. 3:81.Google Scholar
  31. Sedvall, G. C., and Kopin, I. J. 1967. Influence of sympathetic denervation and nerve impulse activity of tyrosine hydroxylase in the rat submaxillary gland. Biochem. Pharmacol. 16:39.CrossRefGoogle Scholar
  32. Thoenen, H.; Mueller, R. A.; and Axelrod, J. 1969. Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 169:249.PubMedGoogle Scholar
  33. Udenfriend, S.; Zaltzman-Nirenberg, P.; and Nagatsu, T. 1965. Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem. Pharmaco1. 14:837.CrossRefGoogle Scholar
  34. Viveros, O. H.; Arqueros, L.; Connett, R. J.; and Kirshner, N. 1969. Mechanism of secretion from the adrenal medulla. Molec. Pharmacol. 5:60.Google Scholar
  35. Weiner, N., and Selvaratnam, I. 1968. The effect of tyramine on the synthesis of norepinephrine. J. Pharmacol. Ex. Ther. 161:21.Google Scholar
  36. Wurzburger, R. J., and Musacchio, J. M. 1971. Subcellular distribution and aggregation of bovine adrenal tyrosine lydroxylase. J. Pharmacol. Exp. Ther. in press.Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • José M. Musacchio
    • 1
  1. 1.New York University School of MedicineNew YorkUSA

Personalised recommendations