Hemagglutinins: Primitive Receptor Molecules Operative in Invertebrate Defense Mechanisms

  • Ronald T. Acton
  • Peter F. Weinheimer


In recent years those of us who hold an interest in comparative immunology have witnessed an increased emphasis in deciphering the molecular events operative in invertebrate defense mechanisms. Our own efforts have centered mainly on the role of various hemolymph factors in invertebrate immunity, and whether these factors bear any relationship to components of vertebrate immune mechanisms. From our studies and those of others, there exists several lines of evidence that: (1) hemagglutinins (HA) represent primitive receptor molecules operative in the immune mechanism of invertebrates, and (2) the hemagglutinins of several key invertebrate species are related chemically. In addition, HA is apparently related to other hemolymph factors such as inducible bactericides, naturally occurring hemolysins, and clotting factors. Thus, in this presentation, we would like to present a unifying concept of how these molecules with seemingly diverse functions may be related, and how they may have evolved from a common ancestral gene. We will also question whether analogies exist between invertebrate hemolymph factors and the immunoglobulins, complement and clotting systems of vertebrates. Admittedly, much will be speculative. However, if one closely peruses the literature, tersely reviewed here, it may be obvious that many of our conclusions have substance.


Sialic Acid Horseshoe Crab Helix Pomatia Spiny Lobster Crassostrea Virginica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, R. T., 1970, Immunobiological and Immunochemical Studies of the Oyster, Crassostrea virginica, pp. 86; Doctoral Thesis, Department of Microbiology, University of Alabama in Birmingham, Birmingham, Alabama.Google Scholar
  2. Acton, R. T. and Evans, E. E., 1968, Comparative immunological studies with the oyster, Crassostrea virginica, In Vitro 3: 146–153.Google Scholar
  3. Acton, R. T., Bennett, J. C., Evans, E. E., and Schrohenloher, R. E., 1969b, Physical and chemical characterization of an oyster hemagglutinin, J. Biol Chem. 244: 4128–4135.Google Scholar
  4. Acton, R. T., Weinheimer, P. F., and Evans, E. E., 1969, A bactericidal system in the lobster, Homarus americanus, J. Invertebr. Pathol. 13: 463–464.CrossRefGoogle Scholar
  5. Acton, R. T., Weinheimer, P. F., and Niedermeier, W., 1973, The carbohydrate composition of invertebrate hemagglutinin subunits isolated from the lobster Panulirus argus and the oyster Crassostrea virginica, Comp. Biochem. Physiol 44: 185–189.Google Scholar
  6. Austen, K. F., 1971, Chemical mediators of the acute inflammatory response in man, in: Progress in Immunology, pp. 723–744, ( B. Amos, ed.), Academic Press, New York.Google Scholar
  7. Bang, F. B., 1970, Cellular aspects of blood clotting in the seastar and the hermit crab, J. Reticuloendothelial Soc. 7: 161–172.Google Scholar
  8. Bernheimer, A. W., 1952, Hemagglutinins in caterpillar blood, Science 155: 150–151.CrossRefGoogle Scholar
  9. Bizot, M., 1971, Hemagglutinin from the snail Eobania vermiculate, Vox Sanguinis 21: 465–468.CrossRefGoogle Scholar
  10. Boyd, W. C. and Brown, R., 1965, A specific agglutinin in the snail Otala (Helix) lactea, Nature 208: 593–594.CrossRefGoogle Scholar
  11. Boyd, W. C., Brown, R., and Boyd, L. G., 1966, Agglutinins for human erythrocytes in Mollusks, J. Immunol 96: 301–303.PubMedGoogle Scholar
  12. Boyden, S. V., 1966, Natural antibodies and the immune response, Adv. Immunol 5: 1–28.PubMedCrossRefGoogle Scholar
  13. Brown, R., Almodovar, L. R., Bhatia, H. M., and Boyd, W. C., 1968, Blood group specific agglutinins in invertebrates, J. Immol. 100: 214–216.Google Scholar
  14. Burnet, F. M., 1968, Evolution of the immune process in vertebrates, Nature 218: 426–430.PubMedCrossRefGoogle Scholar
  15. Cohen, E., 1968, Immunological observations of the agglutinins of the hemolymph of Limulus polyphemus and Birgus latro, Trans. N. Y. Acad. Sci 30: 421–443Google Scholar
  16. Cohen, E., Rose, A. W., and Wissler, F. C., 1962, Heteroagglutinins of the horseshoe crab, Limulus polyphemus, Life Sci 4: 2009–2015.CrossRefGoogle Scholar
  17. Cooper, E. L., Acton, R. T., Weinheimer, P. H. and Evans, E. E., 1969, Lack of a bactericidal response in the earthworm Lumbrious terrestris after immunization with bacterial antigens, J. Invertebr. Pathol 14: 402–406.PubMedCrossRefGoogle Scholar
  18. Cooper, E. L., Lemmi, M. A., and Moore, T., 1973, Agglutinins and cellular immunity in earthworms, Ann. N. Y. Acad. Sci. (in press).Google Scholar
  19. Cushing, J. E., Calaprice, N. L., and Trump, G., 1963, Blood group reactive substances in some marine invertebrates, Biol Bull 125: 69–80.CrossRefGoogle Scholar
  20. Cushing, J. E., McNeely, J. L., and Tripp, M. R., 1969, Comparative immunology of sipunculid coelomic fluid, J. Invertebr. Pathol 14: 4–12.CrossRefGoogle Scholar
  21. Day, N. K. B., Gewaiz, H., Johannsem, R., Finstad, J., and Good, R. A., 1970, Complement and complement-like activity in lower vertebrates and invertebrates, J. Exp. Med. 132: 941–950.PubMedCrossRefGoogle Scholar
  22. Evans, E. E., Painter, B., Evans, M. L., Weinheimer, P., and Acton, R. T., 1968, An induced bactericidin in the spiny lobster, Panulirus argus, Proc. Soc. Exp. Biol Med. 128: 394–398.Google Scholar
  23. Evans, E. E., Weinheimer, P. F., Painter, B., Acton, R. T., and Evans, M. L., 1969a, Secondary and tertiary responses of the induced bactericidin from the West Indian spiny lobster, Panulirus argus, J. Bacteriol. 98: 943–946.Google Scholar
  24. Evans, E. E., Weinheimer, P. F., Acton, R. T., and Cushing, J. E., 1969b, Induced bactericidal response in a sipunculid worm, Nature 223: 695.Google Scholar
  25. Evans, E. E., Acton, R. T., Bennett, J. C., and Weinheimer, P. F., 1969d, Evolution of the immune response. In: Protides of the Biological Fluids, (H. Peeters, ed.), Pergamon Press, Oxford, pp. 29–38.Google Scholar
  26. Finstad, C. L., Litman, G. W., Finstad, J., and Good, R. A., 1972, The evolution of the immune response. XIII. The characterization of purified erythrocyte agglutinins from two invertebrate species, J. Immunol. 108: 1704–1711.PubMedGoogle Scholar
  27. Fuller, G. M. and Doolittle, R. F., 1971a, Studies of invertebrate fibrinogen. I. Purification and characterization of fibrinogen from the spiny lobster, Biochemistry 10: 1305–1311.Google Scholar
  28. Fuller, G. M. and Doolittle, R. F., 1971b, Studies of invertebrate fibrinogen. II. Transformation of lobster fibronogen into fibrin, Biochemistry 10: 1311–1315.Google Scholar
  29. Gigli, J. and Austen, K. F., 1971, Phylogeny and function of the complement system, Ann. Rev. Microbiol. 25: 309–332.CrossRefGoogle Scholar
  30. Hammarström, S. and Kabat, E. A., 1969, Purification and characterization of a blood- group. A reactive hemagglutinin from the snail Helix pomatia and a study of its combining site, Biochemistry 8: 2696–2705.PubMedCrossRefGoogle Scholar
  31. Hammarstrom, S. and Kabat, E. A., 1971, Studies on specificity and binding properties of the blood group. A reactive hemagglutinin from Helix pomatia, Biochemistry 10: 1684–1692.PubMedCrossRefGoogle Scholar
  32. Ishiyama, I. and Uhlenbruck, G., 1972, Further studies on the specificity of the anti-A agglutinin from Helix pomatia, Comp. Biochem. Physiol 42A: 269–216.CrossRefGoogle Scholar
  33. Jenkins, C. R. and Rowley, D., 1970, Immunity in invertebrates. The purification of a hemmaglutinin to rat, rabbit erythrocytes from the hemolymph of the murray mussel (Velesunio ambiguus), Australian J. Exp. Biol. Med. Sci. 48: 129–137.CrossRefGoogle Scholar
  34. Kühnemund, O. and Kohler, W., 1969, Untersuchungen uber die Reingung des Protectins Anti-Anel (Anti-Ahp) aus Helix pomatia, Experientia 25: 1137–1138.PubMedCrossRefGoogle Scholar
  35. McDade, J. E. and Tripp, M. R., 1967, Mechanisms of agglutination of red blood cells by oyster hemolymph, J. Invertebr. Pathol. 9: 523–530.PubMedCrossRefGoogle Scholar
  36. McKay, G. D., 1972, Participation of components of the blood coagulation system in the inflammatory response, Am. J. Pathol. 67: 181–204.PubMedGoogle Scholar
  37. McKay, D. and Jenkin, C. R., 1970a, Immunity in the invertebrates. The role of serum factors in phagocytosis of erythrocytes by hemocytes of the fresh-water crayfish (Parachaeraps bicarinatus), Australian J. Exp. Biol. Med. Sci. 48: 139–150.Google Scholar
  38. McKay, D. and Jenkins, C. R., 1970c, Immunity in the invertebrates. Correlation of the phagocytic activity of hemocytes with resistance to infection in the crayfish (Parachaeraps vicarinatus), Australian J. Exp. Biol. Med. Sci. 48: 609–617.CrossRefGoogle Scholar
  39. McKay, D., Jenkin, C. R., and Rowley, D., 1969, Immunity in the invertebrates I. Studies on the naturally occurring hemagglutinins in the fluid from invertebrates. Australian J. Exp. Biol. Med. Sci. 47: 125–134.CrossRefGoogle Scholar
  40. Marchalonis, J. J. and Edelman, G. M., 1968b, Phylogenese origins of antibody structure. III. Antibodies in the primary immune response of the sea lamprey, Petromyzon marinus, J. Exp. Med. 127: 891–914.Google Scholar
  41. Miller, V. H., Ballback, R. S., Pauley, G. B., and Krassner, S. M., 1972, A preliminary physiochemical characterization of an agglutinin found in the hemolymph of the crayfish Proeambarus elarkii, J. Invertebr. Pathol 19: 83–93.CrossRefGoogle Scholar
  42. Pauley, G. B., Granger, G. A., and Krassner, S. M., 1971a, Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia ealiforniea, J. Invertebr. Pathol. 18: 207–218.Google Scholar
  43. Pauley, G. B., Krassner, S. M., and Chapman, F. A., 1971b, Bacterial clearance in the California sea hare, Aplysia ealiforniea, J. Invertebr. Pathol. 18: 227–239.Google Scholar
  44. Prokop, O., Schlesinger, D., and Rackwitz, O., 1965, Uber eine thermostabile “antibody-like substance” (Anti-Ahel) bei Helix pomatia und derem Herkunft, Z. Immunitaetsforsch. 129: 402–412.Google Scholar
  45. Prokop, O., Uhlenbruck, G., and Kohler, W., 1968, A new source of antibody-like substance having anti-blood groups specificity, Vox Sanguinis 14: 321–333.PubMedCrossRefGoogle Scholar
  46. Prowse, R. H. and Tait, N. N., 1969, In vitro phagacytosis by amoebocytes from the hemolymph of Helix aspersa (Muller). I. Evidence for opsonic factor(s) in serum, Immunology 17: 431–443.Google Scholar
  47. Rabin, H., 1970, Hemocytes, hemolymph and defense reactions in Crustaceans, J. Reticuloendothelial Soc. 1: 195–207.Google Scholar
  48. Schnitzler, St. and Kilias, R., 1970, Uber das Vorkommen von Hamagglutinin bei Landlungenschnecken, Blut 20: 221.PubMedCrossRefGoogle Scholar
  49. Scott, M. T., 1971a, A naturally occurring hemagglutinin in the hemolymph of the American cockroach, Arch. Zool. Exp. Gen. 112: 73–80.Google Scholar
  50. Scott, M. T., 1971b, Recognition of foreignness in invertebrates. II. In vitro studies of cockroach phagocytic hemocytes, Immunology 27:817–828.Google Scholar
  51. Scott, M. T., 1972, Partial characterization of the hemagglutinating activity in hemolymph of the American cockroach (Periplaneta americana), J. Invertebr. Pathol. 19: 66–71.CrossRefGoogle Scholar
  52. Stewart, J. E., Arie, B., Zwicker, B. U., and Dingle, J. R., 1969, Gaffkemia, a bacterial disease of the lobster, Homarus americanus: Effects of the pathogen, Gaffkya homari, on the physiology of the host, Can. J. Microbiol. 15: 925–932.PubMedCrossRefGoogle Scholar
  53. Stuart, A. E., 1958, The reticuloendothelial apparatus of the lesser octopus, Eledone cirrosa, J. Pathol. Bacteriol. 96: 401.CrossRefGoogle Scholar
  54. Tripp, M. R., 1966, Hemagglutinin in the blood of the oyster, Crassostrea virginica, J. Invertebr. Pathol. 8: 478–484.CrossRefGoogle Scholar
  55. Tyler, A., 1946, Natural heteroagglutinins in the body fluids and seminal fluids of various invertebrates, Biol. Bull. 90: 213–219.PubMedCrossRefGoogle Scholar
  56. Tyler, A. and Metz, C. B., 1945, Natural heteroagglutinins in the serum of the spiny lobster, Panulirus interruptus. I. Taxonomic range of activity of electrophoretic and immunizing properties, J. Exp. Zool. 100: 311–406.CrossRefGoogle Scholar
  57. Tyler, A. and Scheer, B. T., 1945, Natural heteroagglutinins in the serum of the spiny lobster, Panulirus interrupts. II. Chemical and antigenic relation to blood proteins, Biol Bull 89: 193–200.PubMedCrossRefGoogle Scholar
  58. Uhlenbruck, G. and Prokop, O., 1966, An agglutinin from Helix pomatia which reacts with terminal N-acetyl-D-galactosamine, Vox Sanguinis 11: 519–520.PubMedCrossRefGoogle Scholar
  59. Weinheimer, P. F., 1970b, “Characterization of erythrocyte-reactive factors of Panulirus argus: A contribution to immunophylogeny,” Doctoral Thesis, Department of Microbiology, University of Alabama in Birmingham, Birmingham, Alabama.Google Scholar
  60. Weinheimer, Peter F., 1970a, Immunophylogeny. A review of immune-like mechanisms of invertebrate species, Alabama J. of Med. Sci. 7: 451–460.Google Scholar
  61. Weinheimer, P. F., Evans, E. E., Stroud, R. M., Acton, R. T., and Painter, B., 1969a, Comparative Immunology: Natural hemolytic system of the spiny lobster, Panulirus argus, Proc. Soc. Exp. Biol Med. 130: 322–326.Google Scholar
  62. Weinheimer, P. F., Acton, R. T., and Evans, E. E., 1969b, An attempt to induce a bactericidal response in the oyster, J. Bacteriol. 97: 462–463.Google Scholar
  63. Weinheimer, P. F., Acton, R. T., Cushing, J. E., and Evans, E. E., 1970, Reactions of sipunculid coelomic fluid with erythrocytes, Life Sci 9: 145–152.PubMedCrossRefGoogle Scholar
  64. Weinheimer, P. F., Acton, R. T., Evans, E. E., and Bennett, J. C., 1974, Characterization of the natural hemagglutinin from the spiny lobster, Panulirus argus, Biochemistry (submitted for publication).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Ronald T. Acton
    • 1
  • Peter F. Weinheimer
    • 2
    • 3
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Medicine Division of Clinical Immunology and RheumatologyUniversity of Alabama in BirminghamBirminghamUSA
  3. 3.American Cancer SocietyUSA

Personalised recommendations