Advertisement

Insect Hemocytes and the Problem of Host Recognition of Foreignness

  • A. J. Nappi

Abstract

If cellular and humoral immune reactions of vertebrate species were used as evaluative criteria, insects would not be considered immunocompetent. Immunologic specificity, as defined by antigen—antibody complementarity, and immunologic memory, as measured by anamnestic responses or second-set allograft rejections, are not characterisitc of insect immunity (Good and Papermaster, 1964; Saunders, 1970). However, even in the absence of these and other “deficiencies,” cellular and humoral immune reactions of insects are excellent homeostatic adaptations that effectively discern and combat foreignness and abnormal or effete host tissues. Against those foreign organisms too large to be phagocytized, the principal cellular reaction of insects is encapsulation. Typically, the initial reaction is characterized by aggregation of host blood cells or hemocytes to form a capsule around a parasite, and the deposition of melanin on or very near the outer surface of the parasite (c.f. Salt, 1963, 1970; Poinar, 1969; Shapiro, 1969). Against various microbial parasites, some insects produce humoral substances (antibacterial, bactericidal, lytic, etc.) that provide some degree of immunity. Unfortunately, the origin of these substances is unknown. Moreover, except for nonspecificity and lack of similarity to vertebrate antibodies (immunoglobulins), little is known of their chemical nature (Briggs, 1958, 1964; Stephens, 1959, 1962a,b, 1963ad; Stephens and Marshall, 1962; Chadwick, 1967; Hink and Briggs, 1968, 1969; Chadwick and Vilk, 1969; Boman et al., 1972).

Keywords

Juvenile Hormone Imaginal Disc Infected Larva Host Recognition Insect Parasitism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, S. K. and King, R. C., 1969, A comparative study of the ring glands from wild-type and 1 (2)gl mutant Drosophila melanogaster, J. Morphol. 129: 171–200.Google Scholar
  2. Bernheimer, A. W., Caspari, E., and Kaiser, A. D., 1952, Studies on antibody formation in caterpillars, J. Exp. Zool. 119: 23–35.CrossRefGoogle Scholar
  3. Boman, H. G., Nilsson, I., and Rasmuson, B., 1972, Inducible antibacterial defense systems in Drosophila, Nature 237: 232–235.PubMedCrossRefGoogle Scholar
  4. Briggs, J. D., 1958, Humoral immunity in lepidopterous larvae, J. Exp. Zool. 138: 155–188.PubMedCrossRefGoogle Scholar
  5. Briggs, J. D., 1964, Immunological responses, in: The Physiology of Insecta, Vol. 3, pp. 259–283 ( M. Rockstein, ed.), Academic Press, New York.Google Scholar
  6. Burdette, W. J., 1954, Effect of ligation of Drosophila larvae on tumor incidence, Cancer Res. 14: 780–784.PubMedGoogle Scholar
  7. Caspari, E., 1933, Über die Wirkung eines pleiotropen Gens bei der Mehlmotte Ephestia kuhneilla Zeller, Arch. Entwicklungsmech. Organ. 130: 353–381.CrossRefGoogle Scholar
  8. Chadwick, J. S., 1967, Serological responses of insects, Federation Proc. 26:1675–1679.Google Scholar
  9. Chadwick, J. S. and Vilk, E., 1969, Endotoxins from several bacterial species as immunizing agents against Pseudomonas aeruginosa in Galleria mellonella, J. Invertebr. Pathol. 13: 410–415.CrossRefGoogle Scholar
  10. Crossley, A. C., 1964, An experimental analysis of the origins and physiology of hemocytes in the blue blow-fly, Calliphora erythrocephala, J. Exp. Zool. 157: 375–398.CrossRefGoogle Scholar
  11. Crossley, A. C., 1965, Transformations in the abdominal muscle of the blue blow-fly, Calliphora erythrocephala (Meig.), during metamorphosis, J. Embryol. Exp. Morphol. 14: 89–110.PubMedGoogle Scholar
  12. Crossley, A. C., 1968, The fine structure and metabolism of breakdown of larval intersegmental muscles in the blow-fly, Calliphora erythrocephala, J. Insect Physiol. 14: 1389–1407.CrossRefGoogle Scholar
  13. Eichwald, E. J., 1963, Tissue transplantation, Advan. Biol. Med. Phys. 9: 94–205.Google Scholar
  14. Ephrussi, B. and Beadle, G. W., 1935, La transplantation des ovaries chez la drosophile, Bull. Biol. (France, Belgium) 69: 492–502.Google Scholar
  15. Ephrussi, B. and Beadle, G. W., 1936, A technique of transplantation for Drosophila, Am. Naturalist 70: 218–226.CrossRefGoogle Scholar
  16. Gateff, E. and Schneiderman, H. A., 1969, Neoplasms in mutant and cultured wild-type tissues of Drosophila, Nat. Cancer Inst. Monograph 31: 365–397.Google Scholar
  17. Good, R. A. and Papermaster, B. W., 1964, Ontogeny and phylogeny of adaptive immunity, Adv. Immunology 4: 1–115.CrossRefGoogle Scholar
  18. Gorell, T. A., Gilbert, L. I., and Siddal, J. B., 1972, Studies on hormone recognition by arthropod target tissues, Am. Zool. 12: 347–356.Google Scholar
  19. Hadorn, E., 1938, Die Degeneration der Imaginalscheiben bei latalen Drosophila Larven der Mutante “lethal giant,” Rev. Suisse Zool 45: 425–429.Google Scholar
  20. Harvey, W. R. and Williams, C. M., 1961, The injury metabolism of the Cecropia silkworm, I. Biological amplification of the effects of localized injury, J. Insect Physiol 7: 81–99.CrossRefGoogle Scholar
  21. Herman, W. S., 1968, Control of hormone production in insects, in: Metamorphosis: A Problem in Developmental Biology, pp. 107–141 ( W. Etkin and L. Gilbert, eds.), Appleton-Century-Crofts, New York.Google Scholar
  22. Hink, W. F. and Briggs, J. D., 1968, Bactericidal factors in hemolymph from normal and immune wax moth larvae, Galleria mellonella, J. Insect Physiol 14: 1025–1034.CrossRefGoogle Scholar
  23. Hink, W. F. and Briggs, J. D., 1969, Immune responses of ligatured Galleria mellonella larvae, J. Invertebr. Pathol 13: 308–309.PubMedCrossRefGoogle Scholar
  24. Howland, R. B., Glancy, E. A., and Sonnenblick, B. P., 1937, Transplantation of wild-type and vermilion eye disks among four species of Drosophila, Genetics 22: 434–442.PubMedGoogle Scholar
  25. Jones, J. C., 1962, Current concepts concerning insect hemocytes, Am. Zool 2: 209–246.Google Scholar
  26. Jones, J. C., 1964, The circulatory system of insects, in: The Physiology of Insecta, Vol 3, pp. 1–106 ( M. Rockstein, ed.), Academic Press, New York.Google Scholar
  27. Jones, J. C., 1970, Hemocytopoiesis in insects, in: Regulation of Hematopoiesis, Vol 1, pp. 7–65 ( A. S. Gordon, ed.), Appleton-Century-Crofts, New York.Google Scholar
  28. Judy, K. J., 1969, Cellular responses to ecdysterone in vitro, Science 165: 1374–1375.Google Scholar
  29. Judy, K. J. and Gilbert, L. I., 1970, Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L), J. Morphol. 131: 277–300.CrossRefGoogle Scholar
  30. Judy, K. J. and Marks, E. P., 1971, Effects of ecdysterone in vitro on hindgut and hemocytes of Manduca sexta (Lepidoptera), Gen. Comp. Endocrinol 17: 351–359.PubMedCrossRefGoogle Scholar
  31. Kambysellis, M. P., 1968, Interspecific transplantation as a tool for indicating phylogenetic relationship, Proc. Nat. Acad. Sci. 59: 1166–1172.PubMedCrossRefGoogle Scholar
  32. Kambysellis, M. P., 1970, Compatibility in insect tissue transplantations. I. Ovarian transplantations and hybrid formation between Drosophila species endemic to Hawaii, J. Exp. Zool 175: 169–180.PubMedCrossRefGoogle Scholar
  33. Kitano, H., 1969a, Experimental studies on the parasitism of Apanteles glomeratus L. with special reference to its encapsulating-inhibiting capacity, Bull Tokyo Gakugei Univ. Ser. Nat. Sci. 21: 95–136.Google Scholar
  34. Kitano, H., 19696, Defensive ability of Apanteles glomeratus L. (Hymenoptera: Braconidae) to the hemocytic reaction of Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae), Appl. Entomol. Zool 4: 41–55.Google Scholar
  35. Monod, J. and Poulson, D. F., 1937, Specific reactions of the ovary to interspecific transplantation among members of the melanogaster group of Drosophila, Genetics 22: 257–263.PubMedGoogle Scholar
  36. Nappi, A. J., 1970, Defense reactions of Drosophila euronotus larvae against the hymenopterous parasite Pseudeucoila bochei, J. Invertebr. Pathol. 16: 408–418.CrossRefGoogle Scholar
  37. Nappi, A. J., 1973b, Hemocytic changes associated with the encapsulation and melanization of some insect parasites, Exp. Parasitol 33: 285–302.Google Scholar
  38. Nappi, A. J. and Stoffolano, Jr., J. G., 1971, Heterotylenchus autumnalis: Hemocytic reactions and capsule formation in the host, Musca domestica, Exp. Parasitol 29: 116–125.Google Scholar
  39. Nappi, A. J. and Stoffolano, Jr., J. G., 1972a, Distribution of hemocytes in larvae of Musca domestica and Musca autumnalis and possible chemotaxis during parasitization, J. Insect Physiol 18: 169–179.Google Scholar
  40. Nappi, A. J. and Streams, F. A., 1969, Hemocytic reactions of Drosophila melanogaster to the parasites Pseudeucoila mellipes and P. bochei, J. Insect Physiol 15: 1551–1566.CrossRefGoogle Scholar
  41. Novák, V. J. A., 1966, Insect Hormones, p. 478, Methuen and Co. Ltd., London.Google Scholar
  42. Pflugefelder, O., 1948, Atypische Gewebsdifferenzierung bein Stabheuschrecken nach experimenteller Stoerung der inneren Sekretion, Z. Krebsforsch. 56: 107–120.CrossRefGoogle Scholar
  43. Pipa, R. L. and Woolever, P. S., 1965, Insect neurometamorphosis. II. The fine structure of perineural connective tissue, adipohemocytes, and the shortening ventral nerve cord of a moth, Galleria mellonella (L.), Z Zellforsch. 68: 80–101.PubMedCrossRefGoogle Scholar
  44. Poinar, Jr., G. O., 1969, Arthropod immunity to worms, in: Immunity to Parasitic Animals, Vol. 1, pp. 173–210 ( G. J. Jackson, R. Herman, and I. Singer, eds.), Appleton- Century-Crofts, New York.Google Scholar
  45. Rizki, M. T., 1960, Melanotic tumor formation in Drosophila, J. Morphol. 106: 147–157.PubMedCrossRefGoogle Scholar
  46. Rizki, M. T., 1962, Experimental analysis of hemocyte morphology in insects, Am. Zool. 2: 247–255.Google Scholar
  47. Rizki, M. T. and Rizki, R. M., 1959, Functional significance of the crystal cells in the larva of Drosophila melanogaster, J. Biophys. Cytol. 5: 235–240.PubMedCrossRefGoogle Scholar
  48. Salt, G., 1956, Experimental studies in insect parasitism. IX. The reactions of a stock insect to an alien parasite, Proc. Roy. Soc. (London) B 146: 93–108.Google Scholar
  49. Salt, G., 1960, Experimental studies in insect parasitism. XI. The hemocytic reaction of a caterpillar under varied conditions, Proc. Roy. Soc. (London) B 151: 446–467.Google Scholar
  50. Salt, G., 1963, The defense reactions of insects to metazoan parasites, Parasitology 53: 527–642.PubMedCrossRefGoogle Scholar
  51. Salt, G., 1965, Experimental studies in insect parasitism. XIII. The hemocytic reaction of a caterpillar to eggs of its habitual parasite, Proc. Roy. Soc. (London) B 162: 303–318.Google Scholar
  52. Salt, G., 1966, Experimental studies in insect parasitism. XIV. The hemocytic reaction of a caterpillar to larvae of its habitual parasite, Proc. Roy. Soc. (London) B 165: 155–178.Google Scholar
  53. Sang, J. H., 1969, Biochemical basis of hereditary melanotic tumors in Drosophila, Nat. Cancer Inst. Monograph 31: 291–301.Google Scholar
  54. Sang, J. H. and Burnet, B., 1963, Physiological genetics of melanotic tumor in Drosophila melanogaster. I. The effects of nutrient balance on tumor penetrance in the tuk strain. Genetics 48: 235–253.PubMedGoogle Scholar
  55. Saunders, G. C., 1970, Development of the immune response, in: Biology of the Immune Response, pp. 93–135 ( P. Abramoff and M. La Via, eds.), McGraw-Hill, New York.Google Scholar
  56. Schneider, F., 1950, Die Abwehrreaktion des Insektenblutes und ihre Beeinflussung durch die Parasiten, Vierteljahresschr. Naturforsch. Ges. Zuerich 95: 22–44.Google Scholar
  57. Schrivastava, S. C. and Richards, A. G., 1965, An autoradiographic study of the relation between hemocytes and connective tissue in the wax moth, Galleria mellonella L., Biol. Bull. 128: 337–345.CrossRefGoogle Scholar
  58. Shapiro, M., 1969, Immunity of insect hosts to insect parasites, in: Immunity to Parasitic Animals, Vol. 1, pp. 211–228 ( G.J. Jackson, R. Herman, and I. Singer, eds.), Appleton-Century-Crofts, New York.Google Scholar
  59. Stephens, J. M., 1959, Immune responses of some insects to some bacterial antigens, Can. J. Microbiol. 5: 203–228.PubMedCrossRefGoogle Scholar
  60. Stephens, J. M., 1962a, Bactericidal activity of the blood of actively immunized wax moth larvae, Can J. Microbiol. 8: 491–499.CrossRefGoogle Scholar
  61. Stephens, J. M., 1962b, Influence of active immunization on melanization of the blood of wax moth larvae, Can. J. Microbiol. 8: 597–602.CrossRefGoogle Scholar
  62. Stephens, J. M., 1963a, Immunity in insects, in: Insect Pathology, Vol. 1, pp. 232–297 (E. A. Steinhous, ed.) Academic Press, New York.Google Scholar
  63. Stephens, J. M., 1963b, Bactericidal activity of hemolymph of some normal insects, J. Insect Pathol. 5: 61–65.Google Scholar
  64. Stephens, J. M., 1963c, Effect of active immunization on total hemocyte counts of larvae of Galleria mellonella (Linnaeus), J. Insect Pathol. 5: 152–156.Google Scholar
  65. Stephens, J. M., 1963d, Protective effects of several immunizing preparations that produce active immunity in Galleria mellonella (Linnaeus), J. Insect Pathol. 5: 129–130.Google Scholar
  66. Stephens, J. M. and Marshall, J. H., 1962, Some properties of an immune factor isolated from the blood of actively immunized wax moth larvae, Can. J. Microbiol 8: 719–725.CrossRefGoogle Scholar
  67. Streams, F. A. and Greenberg, L., 1969, Inhibition of the defense reaction of Drosophila melanogaster parasitized simultaneously by the wasps Pseudeucoila bochei and Pseudeucoila mellipes, J. Invertebr. Pathol. 13: 311–377.CrossRefGoogle Scholar
  68. Vogt, M., 1940, Zur Ursache der unterschiedlichen gonodotropen Wirkung der Ringdruse von Drosophila funebris und Drosophila melanogaster, Arch. Entwicklungsmech. Organ. 141: 424.CrossRefGoogle Scholar
  69. Walker, I., 1959, Die Abwehrreaktion des Wirtes Drosophila melanogaster gegen die zoophage Cynipidae Pseudeucoila bochei Weld, Rev. Suisse Zool. 68: 569–632.Google Scholar
  70. Whitten, J. M., 1964, Hemocytes and the metamorphosing tissues in Sarcophaga bullata, Drosophila melanogaster, and other cyclorrhaphous Diptera, J. Insect Physiol. 10: 409–528.CrossRefGoogle Scholar
  71. Whitten, J. M., 1968, Metamorphic changes in insects, in: Metamorphosis: A Problem in Developmental Biology, pp. 43–105 ( W. Etkin and L. I. Gilbert, eds.), Appleton- Cent ury-Crofts, New York.Google Scholar
  72. Whitten, J. M., 1969, Hemocyte activity in relation to epidermal cell growth, cuticle secretion and cell death in a metamorphosing cyclorrhaphan pupa, J. Insect Physiol. 15: 763–778.CrossRefGoogle Scholar
  73. Wigglesworth, V. B., 1959, Insect blood cells, Ann. Rev. Ent. 4: 1–16.CrossRefGoogle Scholar
  74. Wigglesworth, V. B., 1970, Insect Hormones, p. 159, Cambridge University Press, London.Google Scholar
  75. Wyatt, G. R. and Linzen, B., 1965, The metabolism of ribonucleic acid in Cecropia silkmoth pupae in diapause, during development and after injury, Biochim. Biophys. Acta 103: 588–600.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • A. J. Nappi
    • 1
  1. 1.Biological SciencesState University of New YorkOswegoUSA

Personalised recommendations