Cellular Aspects of Graft Rejection in Earthworms and Some Other Metazoa

  • Pierre Valembois


Knowledge concerning the immune response of invertebrates is relatively obscure when compared to vertebrates. Many authors believe that invertebrates cannot achieve specific reactions characteristic of acquired immunity. According to the approaches of Ehrlich (1900), Jerne (1955), and Burnet (1959), adaptive immunity requires the presence of leukocytes which recognize various antigenic structural patterns. The molecular basis of this recognition is the production of cell-bound receptors which combine specifically with antigens. Each immunocyte carries only one receptor pattern, and one type of injected antigen must select from among the different cells those which have appropriate receptors. Cell division is stimulated and produces leukocytes which exhibit specific immunity against a stimulating antigen. Studies of protein uptake by cells of invertebrates, and especially by echinoderm coelomocytes (Hilgard and Phillips, 1968; Hilgard et al., this symposium) have argued strongly that some of these cells possess specific receptor molecules. However, according to Burnet (1968) and Hilgard (1970), contact with antigen may not produce any permanent proliferation in echinoderm coelomocyte populations which synthesize receptors.


Graft Rejection Acid Phosphatase Activity Coelomic Cavity Cellular Aspect Graft Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S., Miller, B. J., Cooper. E. L., 1971, Transplantation immunity in Annelids. II. Adoptive transfer of the xenograft reaction. Immunology 21: 81–86.PubMedGoogle Scholar
  2. Burnet, F. M., 1959, The Clonal Selection Theory of Acquired Immunity, p. 209, Cambridge University Press, Cambridge.Google Scholar
  3. Burnet, F. M., 1968, Evolution of the immune process in Invertebrates, Nature (London) 218: 426–430.CrossRefGoogle Scholar
  4. Chapron, C. and Valembois, P., 1 967, Infrastructure de la fibre musculaire pariétale des Lombriciens, J. Microscop. 6: 617–626.Google Scholar
  5. Cheng, T. C. and Galloway. P. C., 1970, Transplantation immunity in Mollusks: the histo-incompatibility of Helisoma duryi normale with allografts and xenografts, J. Invertebr. Pathol, 15: 177–192.PubMedCrossRefGoogle Scholar
  6. Cooper, E. L., 1968, Rejection of xenografts exchange between Lumhricus terrestris and Eisenia foetida, Transplantation 6: 322–337.PubMedCrossRefGoogle Scholar
  7. Cooper, E. L., 1969, Chronic allograft rejection in Lumbricus terrestris, J. Exp. Zool. 171: 69–74.PubMedCrossRefGoogle Scholar
  8. Duprat, P., 1964, Mise en évidence de réactions immunitaires dans les homogreffes de paroi du corps chez le Lombricien Eisenia foetida typica, Comp. Rend. Acad. Sci. Paris 259: 4177–4180.Google Scholar
  9. Duprat, P., 1967, Etude de la prise et du maintien d’un greffon de paroi du corps chez le Lombricien Eisenia foetida typica, Ann. Inst. Pasteur, 113: 367–88.Google Scholar
  10. Ehrlich, P., 1900, On immunity with special reference to cell life, Proc. Royal Soc. 66: 424–448.Google Scholar
  11. Fauré-Fremiet, E., 1927, Les amibocytes des Invertébrés à l’état quiescent et à l’état actif, Arch. Anat. Microscop. Morphol. Exp 23: 99–173.Google Scholar
  12. Freeman, G., 1970, Transplantation specificity in Echinoderms and lower Chordates, Transplant. Proc. 2: 236–239.PubMedGoogle Scholar
  13. Gipouloux, J. D., 1966, Observations sur la compatibilité ou l’incompatibilité entre embryons parabiotiques chez les Amphibiens Anoures, Comp. Rend. Soc Biol 160: 2291–2294.PubMedGoogle Scholar
  14. Hilgard, H. R., 1970, Studies of protein uptake by Echinoderm cells: their possible significance in relation to the phylogeny of immune responses, Transplant. Proc. 2: 240–242.PubMedGoogle Scholar
  15. Hilgard, H. R. and Phillips, J. H., 1968, Sea urchin response to foreign substances, Science, 161: 1243–1245.PubMedCrossRefGoogle Scholar
  16. Hilgard, H. R., Wander, R. H., and Hinds, W. E., 1973, Specific receptors in relation to the evolution of immunity (this symposium).Google Scholar
  17. Jerne, J., 1970, The natural selection theory of antibody formation, Proc. Nat. Acad. Sci. U.S. 41: 849–857.CrossRefGoogle Scholar
  18. Theodor, J., 1970, Distinction between “self” and “not-self” in lower Invertebrates, Nature (London) 227: 690–692.CrossRefGoogle Scholar
  19. Theodor, J., 1971, Reconnaissance du “self” ou reconnaissance des “not-self,” Arch. Zool. Exp. Gen. 112: 113–116.Google Scholar
  20. Tripp, M. R., 1970, Immunity in Mollusca, Transplant. Proc. 2: 231–232.PubMedGoogle Scholar
  21. Valembois, P., 1963, Recherches sur la nature de la réaction antigreffe chez le Lombricien Eisenia foetida Sav., Comp. Rend. Acad. Sci., Paris. 257: 3489–3490.Google Scholar
  22. Valembois, P., 1971a, Evolution de la musculature d’un xénogreffon de paroi du corps chez un Lombricien. J. Microscop. 11: 339–352.Google Scholar
  23. Valembois, P., 1971b, Rôle des leucocytes dans l’acquisition d’une immunité antigreffe spécifique chez les Lombriciens, Arch. Zool. Exp Gen. 112: 97–104.Google Scholar
  24. Valembois, P., 1973, Quelques aspects phylogéniques de la réaction d’incompatibilité aux greffes chez les Métazoaires, Ann. Biol. 12: 1–26.Google Scholar
  25. Wagge, L. E., 1955, Amoebocytes. Intern. Rev. Cytol. 4: 31–78.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Pierre Valembois
    • 1
  1. 1.Laboratoire de Zoologie de l’Université de Bordeaux I et Centre de Morphologie ExpérimentaleC.N.R.S. Institut de Biologie AnimaleTalenceFrance

Personalised recommendations