Advertisement

Raman Spectroscopy with Poor Scatterers

  • E. Steger

Abstract

Any molecule or crystal will have vibrations of very different intensity in its Raman spectrum. By considering together equations (2), (19), and (27) from the introductory chapter in Volume 1, the intensity of the fundamental with number i (i = 1,..., 3N − 6 or iN − 5, etc.), characterized by normal coordinate Q i , may be written after Introduction of Placzeck’s simplified polarizability theory as
$$ {I_i} \propto \left( {\frac{{\partial \alpha }}{{\partial {Q_i}}}} \right)_0^2 $$
(1)
The occurrence of Q indicates dependence on the mode of molecular motion. For symmetric molecules there are selection rules by which, in many cases, some of the vibrational intensities I i are zero, since changes of polarizability in one part of the molecule are cancelled by opposite changes in others. Intensities may by indefinitely near zero for related molecules lacking such symmetry but retaining comparable vibrations. There may also occur low-intensity vibrations without any selection rules pointing to this possibility. For the molecule P4O6, one of the two totally symmetric vibrations was unknown until 1965, and the right frequency of the analogous movement of P4O10 was recognized in 1967.1 One out of the four totally symmetric vibrations of P3N3C16 was discovered2 and recognized3 only after a series of misleading attempts.

Keywords

Raman Spectrum Raman Spectroscopy Laser Excitation Raman Line Hydrogen Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Chapman, Spectrochim. Acta 24A: 1687 (1968).Google Scholar
  2. 2.
    E. Steger and R. Stahlberg, Z. Naturforsch. 17b: 780 (1962); Z. Anorg. Allgem. Chem. 326: 243 (1964).Google Scholar
  3. 3.
    J. C. Hisatsune. Spectrochim. Acta 21: 1899 (1965).Google Scholar
  4. 4.
    H. M. Gager, J. Lewis, and M. J. Ware, Chem. Commun.: 116 (1966).Google Scholar
  5. 5.
    A. M. Adams, J. B. Cornell, J. L. Dawes, and R. D. W. Kemmitt, Inorg. Nuclear Chem. Letters 3: 437 (1967).Google Scholar
  6. 6.
    J. P. Russel, J. Physique 26: 620 (1965).Google Scholar
  7. 7.
    V. S. Ryazanov and V. S. Gorelik, Fiz. Tverd. Tela 10: 1909 (1968).Google Scholar
  8. 8.
    H. Siebert, Z. Anorg. Allgem. Chem. 275: 225 (1954).Google Scholar
  9. 9.
    J. Brandmüller, Optik 12: 389 (1955).Google Scholar
  10. 10.
    J. R. Nielsen, J. Opt. Soc. Am. 37: 494 (1947).Google Scholar
  11. 11.
    G. E. Walrafen, J. Chem. Phys. 40: 3249 (1964).Google Scholar
  12. 12.
    J. R. Durig and D. W. Wertz, J. Mol. Spectry. 25: 467 (1968).Google Scholar
  13. 13.
    R. W. Rudolph, R. W. Parry, and C. F. Farran, Inorg. Chem. 5: 723 (1966).Google Scholar
  14. 14.
    D. A. Brown, D. Cunningham, and W. K. Glass, J. Chem. Soc. Am.: 1563 (1968).Google Scholar
  15. 15.
    N. W. Alcock, J. Chem. Soc. Am.: 1588 (1968).Google Scholar
  16. 16.
    J. A. Evans and D. A. Long, J. Chem. Soc. Am.: 1688 (1968).Google Scholar
  17. 17.
    J. C. Evans and G. Y.-S. Lo, J. Phys. Chem. 70: 11 (1966).Google Scholar
  18. 18.
    J. Brandmüller, Z. Angew. Phys. 5: 95 (1953).Google Scholar
  19. 19.
    J. C. Evans and G. Y.-S. Lo, J. Phys. Chem. 71: 3942 (1967).Google Scholar
  20. 20.
    J. Shamir and H. H. Hyman, J. Phys. Chem. 70: 3132 (1966).Google Scholar
  21. 21.
    J. S. Kirby-Smith and E. A. Jones, J. Opt. Soc. Am. 39: 780 (1949).Google Scholar
  22. 22.
    W. E. Klee, Z. Anorg. Allgem. Chem. 343: 58 (1966).Google Scholar
  23. 23.
    S. Pinchas and D. Sadeh, J. Inorg. Nuclear-Chem. 30: 1785 (1968).Google Scholar
  24. 24.
    G. Davidson, E. A. V. Ebsworth, G. M. Sheldrick, and L. A. Woodward, Spectrochim. Acta 22: 67(1966).Google Scholar
  25. 25.
    B. Beagly, A. G. Robiette, and G. M. Sheldrick, Chem. Comrn.: 601 (1967).Google Scholar
  26. 26.
    H. Siebert, J. Eints, and E. Fluck, Z. Naturforsch. 236: 1006 (1968).Google Scholar
  27. 27.
    G. Bolla, Nuovo Cimento (N.S.) 9: 290 (1932); 10: 101 (1933); 12: 243 (1935); J. Chem. Phys. 6:225(1938).Google Scholar
  28. 28.
    M. Magat, J. Phys. Radium (7) 5: 347 (1934).Google Scholar
  29. 29.
    M. Magat, Ann. Phys. (Paris) 6: 109 (1936).Google Scholar
  30. 30.
    J. H. Hibben, J. Chem. Phys. 5: 994 (1937).Google Scholar
  31. 31.
    P. K. Narayanaswamy, Proc. Indian Acad. Sci. 27A: 311 (1948).Google Scholar
  32. 32.
    W. R. Busing and D. F. Hornig, J. Phys. Chem. 65: 284 (1961).Google Scholar
  33. 33.
    J. W. Schultz and D. F. Hornig, J. Phys. Chem. 65: 2131 (1961).Google Scholar
  34. 34.
    T. T. Wall and D. F. Hornig, J. Chem. Phys. 43: 2079 (1965).Google Scholar
  35. 35.
    G. R. Harrison, R. C. Lord, and J. R. Loofbourow, Practical Spectroscopy, Prentice-Hall, New York (1948 and later 1954), p. 63.Google Scholar
  36. 36.
    G. W. Walrafen, J. Chem. Phys. 36: 1035 (1962).Google Scholar
  37. 37.
    D. E. Irish and T. F. Young, J. Chem. Phys. 43: 1765 (1965).Google Scholar
  38. 38.
    T. F. Young and G. E. Walrafen, Trans. Faraday Soc. 57: 34 (1961).Google Scholar
  39. 39.
    N. G. Zarakhani, M. I. Vinnik, Zh. Fiz. Khim. 37: 2550 (1963).Google Scholar
  40. 40.
    J. Brandmüller and H. Moser, Einführung in die Ramanspektroskopie, translated to Russian by G. V. Perechubova and Kh. E. Stepina, M. M. Sushchinski, ed. Moscow, MIR (1964).Google Scholar
  41. 41.
    R. F. Stamm, C. F. Salzmann, and T. Mariner, J. Opt. Soc. Am. 43: 119 (1953).Google Scholar
  42. 42.
    E. Ziegler and A. G. Hoffmann, paper presented to Raman Symp., Magdeburg 1966; Österr. Chem. Ztg. 68: 319 (1967).Google Scholar
  43. 43.
    J. Brandmüller and H. Moser, Einführung in die Ramanspektro skopie, Dr. Dietrich Steinkopff Verlag, Darmstadt (1962).Google Scholar
  44. 44.
    H. Gerding and H. Houtgraaf, Rec. Trav. Chim. 72: 21 (1953).Google Scholar
  45. 45.
    K. Balsubrahmanyam and D. Nanis, J. Chem. Phys. 42: 676 (1965).Google Scholar
  46. 46.
    J. S. Ziomek and M. D. Zeidler, J. Mol. Spectry. 11: 163 (1963).Google Scholar
  47. 47.
    J. R. Durig, S. F. Bush, and E. E. Mercker, J. Chem. Phys. 44: 4238 (1966).Google Scholar
  48. 48.
    J. Goubeau, Z. Physik. Chem. B45: 237 (1940).Google Scholar
  49. 49.
    Yu. I. Kotov and V. M. Tatevski, Opt. i Spektroskopiya 14: 443 (1963).Google Scholar
  50. 50.
    J. R. Durig and J. W. Clark, J. Chem. Phys. 48: 3216 (1968).Google Scholar
  51. 51.
    J. S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46: 3099 (1967).Google Scholar
  52. 52.
    K. Lunkwitz, Thesis, Technische Universität Dresden, 1964; cf. E. Steger and K. Lunkwitz, J. Mol. Structure, in press.Google Scholar
  53. 53.
    H. W. Schrötter, Z. Angew. Phys. 12: 275 (1960); see also, Brandmüller and Moser, reference 43, p. 157.Google Scholar
  54. 54.
    G. Heintz and A. Simon, Z. Physik Chem. 216: 67 (1961).Google Scholar
  55. 55.
    A. Simon, H. Kriegsmann, and E. Steger, Z. Physik. Chem. 205: 190 (1956).Google Scholar
  56. 56.
    W. Otting, Der Ramanejfekt und seine analytische Anwendung, Springer, Berlin (1952).Google Scholar
  57. 57.
    A. Simon, Kolloid-Z. 85: 8 (1938).Google Scholar
  58. 58.
    H. A. Szymanski, R. Yelin, and L. Marabella, J. Chem. Phys. 47: 1877 (1967).Google Scholar
  59. 59.
    J. R. Durig, D. W. Wertz, B. R. Mitchell, F. Block, and J. M. Greene, J. Phvs. Chem. 71: 3815 (1967).Google Scholar
  60. 60.
    K. Hirano, Bull. Chem. Soc. Japan 41: 731 (1968).Google Scholar
  61. 61.
    R. C. Lord and G. J. Thomas, Biochim. Biophys. Acta 142: 1 (1967); Spectrochim. Acta 23A:2551 (1967).Google Scholar
  62. 62.
    W. Sawodny, K. Niedenzu, and J. W. Dawson, J. Chem. Phys. 45: 3155 (1966).Google Scholar
  63. 63.
    B. Gilbert, Bull. Soc. Chim. Belges 76: 493 (1967).Google Scholar
  64. 64.
    R. S. Krishnan Vidya, J. Gujerat Univ. 6: 158 (1963); C. A. 64 10613 f.Google Scholar
  65. 65.
    F. Rasetti, Z. Physik 61: 598 (1930).Google Scholar
  66. 66.
    L. Cecchi, J. Physique 26: 469 (1965).Google Scholar
  67. 67.
    S. E. Ostroy and E. A. McGinnis, Proc. Pennsylvania Acad. Sci. 35: 172 (1961).Google Scholar
  68. 68.
    H. Wolff and D. Staschewski, Z. Elektroch. Ber. Bunsenges. Phys. Chem. 65: 840 (1961).Google Scholar
  69. 69.
    H. Wolff and H. Ludwig, Z. Elektrochim. Ber. Bunsenges. Phys. Chem. 70: 474 (1966).Google Scholar
  70. 70.
    J. H. R. Clarke and C. Solomon, J. Chem. Phys. 47: 1823 (1967).Google Scholar
  71. 71.
    L. A. Woodward and M. J. Taylor, J. Chem. Soc: 407 (1962).Google Scholar
  72. 72.
    J. H. Carpenter, W. J. Jones, R. W. Jotham, and L. H. Long, Chem. Comm.: 881 (1968).Google Scholar
  73. 73.
    G. G. Dumas, Compt. Rend. B266: 1589 (1968).Google Scholar
  74. 74.
    J. P. Marsault and G. G. Dumas, Compt. Rend. B264: 782 (1967).Google Scholar
  75. 75.
    R. J. Obremsky, C. W. Brown, and E. R. Lipincott, J. Chem. Phvs. 49: 185 (1968).Google Scholar
  76. 76.
    M. Ito, Spectrochim. Acta 21: 2063 (1965).Google Scholar
  77. 77.
    E. V. Perezhina and Zh. Zh. Raskin, Dokl. Akad. Nauk SSSR 150: 1022 (1963).Google Scholar
  78. 78.
    G. Karagounis and R. Issa, Nature 195: 1196 (1962).Google Scholar
  79. 79.
    P. J. Hendra and E. J. Loader, Nature 216: 789 (1967).Google Scholar
  80. 80.
    P. J. Hendra and E. J. Loader, Nature 217: 637 (1968).Google Scholar
  81. 81.
    R. P. Young and N. Sheppard, J. Catalysis 7: 223 (1967); Trans. Faraday Soc. 63: 2291 (1967).Google Scholar
  82. 82.
    G. Zerbi and P. J. Hendra, J. Mol. Spectry. 27: 17 (1968).Google Scholar
  83. 83.
    P. J. Hendra and H. A. Willis, Chem. Commun.: 225 (1968).Google Scholar
  84. 84.
    F. P. Linn and J. L. König, J. Mol. Spectry. 9: 228 (1962).Google Scholar
  85. 85.
    S. Krimm and C. G. Opsaker, Spectrochim. Acta 21: 1165 (1965).Google Scholar
  86. 86.
    M. Tosumi, T. Shimanouchi, and T. Miyazawa, J. Mol. Spectry. 9: 261 (1962).Google Scholar
  87. 87.
    J. M. Schachtschneider and R. G. Snyder, Spectrochim. Acta 19: 117 (1963).Google Scholar
  88. 88.
    J.-P. Mon, Compt. Rend. B266: 244 (1968).Google Scholar
  89. 89.
    T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142: 570 (1966).Google Scholar
  90. 90.
    J. P. Kaminow, R. C. C. Leite, and S. P. S. Porto, J. Phys. Chem. 26: 2085 (1965).Google Scholar
  91. 91.
    S. P. S. Porto and R. S. Krishan, J. Chem. Phys. 47: 1009 (1967).Google Scholar
  92. 92.
    R. S. Krishnan, Proc. Indian Acad. Sci. 26A: 450 (1947).Google Scholar
  93. 93.
    C. H. Perry, J. H. Fertel, and T. F. McNelly, J. Chem. Phys. 47: 1619 (1967).Google Scholar
  94. 94.
    W. G. Nilson and J. G. Skinner, J. Chem. Phys. 48: 2240 (1968).Google Scholar
  95. 95.
    J.-P. Mon, J. Physique 26: 611 (1965).Google Scholar
  96. 96.
    J.-P. Mon, Compt. Rend. B266: 1222 (1968).Google Scholar
  97. 97.
    J. P. Russel, Proc. Phys. Soc. (London) 85: 194 (1965).Google Scholar
  98. 98.
    M. Krauzman, Compt. Rend. B266: 1224 (1968).Google Scholar
  99. 99.
    R. S. Krishnan, Proc. Indian Acad. Sci. A26: 450 (1947).Google Scholar
  100. 100.
    G. B. B. M. Sutherland, Proc. Roy. Soc. (London) A141: 535 (1933).Google Scholar
  101. 101.
    A. I. Stekhanov and M. B. Eliashberg, Opt. i Spektroskopiya 10: 174 (1961).Google Scholar
  102. 102.
    Nguyen Xuan Xinh, A. H. Maradudin, and R. A. Coldwell-Horsfall, J. Physique 26:717 (1965).Google Scholar
  103. 103.
    R. Kaiser and P. Möckel, Phys. Letters 25A: 749 (1967).Google Scholar
  104. 104.
    J. P. Hurrell, S. P. S. Porto, T. C. Damen, and S. Mascaenhas, Phys. Letters 26A: 194 (1968).Google Scholar
  105. 105.
    W. Holzer, W. F. Murphy, H. J. Bernstein, and I. Rolfe, J. Mol. Spectry. 26: 543 (1968).Google Scholar
  106. 106.
    H. Stammreich, D. Bassi, O. Sala, and H. Siebert, Spectrochim. Acta 13: 192 (1958).Google Scholar
  107. 107.
    L. D. Vinh, J. Reynond, and R. Lafont, Compt. Rend. B263: 192 (1966).Google Scholar
  108. 108.
    M. S. Mathur, C. A. Frenzel, and E. B. Bradley, J. Mol. Structure 2: 429 (1968).Google Scholar
  109. 109.
    D. A. Brown, D. Cunningham, and W. K. Glass, Spectrochim. Acta 24A: 965 (1968).Google Scholar
  110. 110.
    N. Krauzman, Compt. Rend. B263: 922 (1966).Google Scholar
  111. 111.
    G. E. Walrafen, J. Chem. Phys. 48: 244 (1968).Google Scholar
  112. 112.
    K. W. F. Kohlrausch, Der Smekal-Raman-Effekt, Springer, Berlin (1931), Ergänzungsband 1931–1937, Berlin (1938).Google Scholar
  113. 113.
    K. W. F. Kohlrausch, “Raman-Spektren,” in: A. Eucken und K. L. Wolf, Hand und Jahrbuch der chemischen Physik, Akad. Verlags-Ges., Leipzig (1943), Vol. 9, Sect. 6.Google Scholar
  114. 114.
    J. H. Hibben, The Raman Effect and its Chemical Applications, Reinhold, New York (1947).Google Scholar
  115. 115.
    H. D. Mallory, J. Chem. Phys. 18: 898 (1950).Google Scholar
  116. 116.
    J. P. Kratochvil, M. Kerker, and L. E. Oppenheimer, J. Phys. Chem. 67: 1097 (1963).Google Scholar
  117. 117.
    J. P. Kratochvil, M. Kerker, and L. E. Oppenheimer, J. Chem. Phys. 43: 914 (1963).Google Scholar
  118. 118.
    D.-J. Coumen, E. L. Mackor, and J. Hijmans, Trans. Faraday Soc. 60: 1539 (1964).Google Scholar
  119. 119.
    R. Stahlberg, Diploma work, Dresden (1962).Google Scholar
  120. 120.
    M. Pestemer, Angew. Chem. 63: 118 (1951); 67: 746 (1955).Google Scholar
  121. 121.
    M. R. Fenske, W. G. Braun, R. V. Wiegand, D. Quiggle, L. H. McCormick and D. H. Rank, Anal. Chem. 19: 700 (1947).Google Scholar
  122. 122.
    A. Simon and E. Streger, Z. Anorg. Allgem. Chem. 277: 209 (1954)Google Scholar
  123. E. Steger and A. Simon, Z. Anorg. Allgem. Chem. 291: 76 (1957).Google Scholar
  124. 123.
    A. de Silveira, M. A. Marques, and N. M. Marques, J. Mol. Spectry. 20: 88 (1966).Google Scholar
  125. 124.
    L. A. Carreira, V. A. Maroni, J. W. Swaine, Jr., and R. C. Plumb, J. Chem. Phys. 45: 2216(1966).Google Scholar
  126. 125.
    E. R. Lippincott, J. A. Psellos, and M. C. Tobin, J. Chem. Phys. 20: 536 (1952).Google Scholar
  127. 126.
    J. Turkevich and S. Ciborowski, J. Phys. Chem. 71: 3208 (1967).Google Scholar
  128. 127.
    A. Simon and G. Schulze, Z. Anorg. Allgem. Chem. 242: 313 (1939).Google Scholar
  129. 128.
    G. E. Walrafen, J. Chem. Phys. 42: 485 (1965).Google Scholar
  130. 129.
    P. J. Hendra, Spectrochim. Acta 23A: 2871 (1967).Google Scholar
  131. 130.
    F. Matossi, Der Ramen-Effekt, Friedr. Vieweg u. Sohn, Braunschweig (1959).Google Scholar
  132. 131.
    F. Perzl and H. Moser, J. Mol. Spectry. 26: 237 (1968).Google Scholar
  133. 132.
    K. Herzog, Thesis, Technische Universität Dresden (1966).Google Scholar
  134. 133.
    K. Herzog and E. Steger, J. Inorg. Nuclear Chem. 27: 1429 (1965).Google Scholar
  135. 134.
    C. Bardot, G. Marignan, and J. Maillols, Compt. Rend. B265: 53 (1967).Google Scholar
  136. 135.
    C. Bardot, G. Marignan, and J. Maillols, Compt. Rend. B266: 611 (1968).Google Scholar
  137. 136.
    C. Bardot, G. Marignan, and J. Maillols, Compt. Rend. C264: 825 (1967).Google Scholar
  138. 137.
    M. J. Taylor and E. Whally, J. Chem. Phys. 40: 1660 (1964).Google Scholar
  139. 138.
    V. I. Valkov and G. L. Maslenkova, Opt. i Spektroskopiya 1: 881 (1956).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • E. Steger
    • 1
  1. 1.Sektion ChemieTechnische UniversitätDresdenDDR

Personalised recommendations