Advertisement

Developments in the Theories of Vibrational Raman Intensities

  • J. Tang
  • A. C. Albrecht

Abstract

The theory of light scattering from an individual particle involving the “summation-over-states” problem of second-order perturbation theory, was offered first in 1925 by Kramers and Heisenberg1 by analogy to the classical theory of dispersion. The same expression was verified later by Dirac2 based on the radiation-field theory. And from this expression Van Vleck3 derived the basic selection rules for the vibrational Raman effects in molecules. For the nonresonance case, special simplifications are possible. When the frequency of the incident light is far from the resonance region, and the initial and final states of the molecule are both in the ground electronic state, it was shown by Placzek4 that the intensity of molecular Raman scattering arises from the dependence of the ground-state polarizability on nuclear vibrations. This so-called polarizability theory of Placzek has led to the bond polarizability theory commonly used by chemists to analyze vibrational Raman spectra in terms of ground-state properties of the molecules. (The bond polarizability theory is reviewed in the first volume of this book.) The object of the present chapter is to review the recent developments of Raman intensity theories, beginning, more or less, at the stage subsequent to the material treated in the first volume and continuing to the most recent work which has appeared in the literature (1960–1968).

Keywords

Wave Function Ground Electronic State Adiabatic Approximation Symmetric Mode Raman Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Kramers and W. Heisenberg, Z. Physik 31: 681 (1925).CrossRefGoogle Scholar
  2. 2.
    P. A. M. Dirac, Proc. Roy. Soc. (London) 114: 710 (1927).CrossRefGoogle Scholar
  3. 3.
    J. H. Van Vleck, Proc. Natl. Acad. Sci. U.S. 15: 754 (1929).CrossRefGoogle Scholar
  4. 4.
    G. Placzek, in: E. Marx, Handbuch der Radiologie, Akademische Verlagsgesellschaft, Leipzig (1934), Vol. 6, p. 205; English translation by Ann Werbin, UCRL Trans-526 (L), is processed by the clearing house for Federal Scientific and Technical Information of the U.S. Department of Commerce.Google Scholar
  5. 5.
    A. C. Albrecht, J. Chem. Phys. 34: 1476 (1961).CrossRefGoogle Scholar
  6. 6.
    L. L. Krushinskii and P. P. Shorygin, Opt. i Spektroskopiya 11: 24 (1961) [Opt. Spectry. 11: 12(1961)].Google Scholar
  7. 7.
    L. L. Krushinskii and P. P. Shorygin, Opt. i Spektroskopiya 11: 151 (1961) [Opt. Spectry. 11: 80(1961)].Google Scholar
  8. 8.
    L. L. Krushinskii and P. P. Shorygin, Opt. i Spektroskopiya 19: 562 (1965) [Opt. Spectry. 19: 312(1965)].Google Scholar
  9. 9.
    P. P. Shorygin, Dokl. Akad. Nauk SSSR 87: 201 (1952).Google Scholar
  10. 10.
    P. P. Shorygin, Izv. Akad. Nauk SSSR Ser. Fiz. 17: 581 (1953).Google Scholar
  11. 11.
    F. A. Savin, Opt. i Spektroskopiya 19: 555 (1965) [Opt. Spectry. 19: 308 (1965)].Google Scholar
  12. 12.
    F. A. Savin, Opt. i Spektroskopiya 19: 743 (1965) [Opt. Spectry. 19: 412 (1965)].Google Scholar
  13. 13.
    F. A. Savin, Opt. i Spektroskopiya 20: 989 (1966) [Opt. Spectry. 20: 549 (1966)].Google Scholar
  14. 14.
    E. M. Verlan, Opt. i Spektroskopiya 20: 605 (1966) [Opt. Spectry. 20: 341 (1966)].Google Scholar
  15. 15.
    E. M. Verlan, Opt. i Spektroskopiya 20: 802 (1966) [Opt. Spectry. 20: 447 (1966)].Google Scholar
  16. 16.
    T. V. Long and R. A. Plane, J. Chem. Phys. 43: 457 (1965).CrossRefGoogle Scholar
  17. 17.
    E. R. Lippincott and G. Nagarajan, Bull. Soc. Chim. Belges. 74: 551 (1965).CrossRefGoogle Scholar
  18. 18.
    J. Tang and A. C. Albrecht, J. Chem. Phys. 49: 1144 (1968).CrossRefGoogle Scholar
  19. 19.
    G. Herzberg and E. Teller, Z. Physik. Chem. (Leipzig) B21: 558 (1933).Google Scholar
  20. 20.
    I. I. Kondilenko, P. A. Korotkov, and V. L. Strizhevskii, Opt. i Spektroskopiya 9: 26 (1960) [Opt. Spectry. 9:13 (1960)].Google Scholar
  21. 21.
    A. C. Albrecht, J. Chem. Phys. 33: 156 (1960).CrossRefGoogle Scholar
  22. 22.
    K. K. Rebane and T. K. Rebane, Izv. Akad. Nauk Est. SSR, Ser. Fiz.-Mat. i Tekh. Nauk 12: 227 (1963).Google Scholar
  23. 23.
    R. A. Preem, Tr. Inst. Fiz. i Astron., Akad. Nauk Est. SSR 20: 114 (1963); 25: 47 (1964).Google Scholar
  24. 24.
    A. D. Liehr, Z. Naturforsch. 13a: 596 (1958).Google Scholar
  25. 25.
    A. C. Albrecht, J. Chem. Phys. 33: 169 (1960).CrossRefGoogle Scholar
  26. 26.
    J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, Advances in Quantum Chemistry (1964), Vol. I, p. 256Google Scholar
  27. see also, A. Dalgarno, Rev. Mod. Phys. 35: 522 (1963).CrossRefGoogle Scholar
  28. 27.
    M. Karplus, J. Chem. Phys. 41: 880 (1964); Kolker and Karplus 39: 2011 (1963).CrossRefGoogle Scholar
  29. 28.
    M. Karplus and H. J. Kolker, J. Chem. Phys. 39: 1493 (1963); ibid, 39: 2997 (1963).CrossRefGoogle Scholar
  30. 29.
    J. O. Hirschfelder, J. Chem. Phys. 3: 555 (1935).CrossRefGoogle Scholar
  31. 30.
    R. P. Bell and D. A. Long, Proc. Roy Soc. (London) A203: 364 (1950).Google Scholar
  32. 31.
    W. Kolos and L. Wolniewiez, J. Chem. Phys. 46: 1426 (1967).CrossRefGoogle Scholar
  33. 32.
    E. Ishiguro, T. Arai, M. Mizushima, and M. Kotani, Proc. Roy. Soc. (London) A65: 178(1952).Google Scholar
  34. 33.
    K. Ruedenberg and R. G. Parr, J. Chem. Phys. 19: 1268 (1951); ibid. 21: 1565 (1953).CrossRefGoogle Scholar
  35. 34.
    A. A. Frost, J. Chem. Phys. 25: 1150 (1956).CrossRefGoogle Scholar
  36. 35.
    A. A. Frost and F. E. Leland, J. Chem. Phys. 25: 1154 (1956).CrossRefGoogle Scholar
  37. 36.
    E. R. Lippincott, J. Chem. Phys. 23: 603 (1955); ibid. 26: 1678 (1957).CrossRefGoogle Scholar
  38. 37.
    E. R. Lippincott and M. O. Dayhoff, Spectrochim. Acta 16: 807 (1960).CrossRefGoogle Scholar
  39. 38.
    E. R. Lippincott and J. M. Stutman, J. Chem. Phys. 68: 2926 (1964).CrossRefGoogle Scholar
  40. 39.
    T. Yoshino and H. J. Bernstein, J. Mol. Spectry. 2: 213 (1958).CrossRefGoogle Scholar
  41. 40.
    D. M. Golden and B. Crawford, J. Chem. Phys. 36: 1654 (1962).CrossRefGoogle Scholar
  42. 41.
    D. A. Long, Proc. Roy. Soc. (London) A217: 203 (1953).Google Scholar
  43. 42.
    M. V. Vol’kenstein, M. A. El’yashevich, and B. I. Stepanov, Molecular Vibrations, State Publishers of Technical-Theoretical Literature, Moscow-Leningrad (1949), Vol. II.Google Scholar
  44. 43.
    M. V. Vol’kenstein, Compt. Rend. Acad. Sci. URSS 32: 185 (1941).Google Scholar
  45. 44.
    L. A. Woodward and D. A. Long, Trans. Faraday Soc. 45: 1131 (1949).CrossRefGoogle Scholar
  46. 45.
    T. Yoshino and H. J. Bernstein, Petroleum Conference on Molecular Spectroscopy, Pergamon Press, New York (1960).Google Scholar
  47. 46.
    G. W. Chantry and R. A. Plane, J. Chem. Phys. 32: 319 (1960).CrossRefGoogle Scholar
  48. 47.
    I. I. Kondilenko and V. L. Strizhevskii, Opt. i Spektroskopiya 17: 528 (1964) [Opt. Spectry. 17:285(1964)].Google Scholar
  49. 48.
    R. Daudel, Advances in Quantum Chemistry (1964), Vol. I, p. 115.CrossRefGoogle Scholar
  50. 49.
    H. Primas, in O. Sinanoglu, Modern Quantum Chemistry, Academic Press, New York, Vol. 2, p. 45.Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • J. Tang
    • 1
  • A. C. Albrecht
    • 1
  1. 1.Department of ChemistryCornell UniversityIthacaUSA

Personalised recommendations