Raman Spectroscopy of Complex Ions in Solution

  • D. E. Irish


A complete understanding of complex ions in solution depends on knowledge of (1) the identity of the complexes; (2) the structures of the species; (3) the equilibrium constants; (4) the thermodynamics of formation; and (5) the mechanisms of formation of the species. Photoelectric Raman spectroscopy is a powerful technique for obtaining some of this information. The number of Raman bands and their degrees of depolarization are often sufficient to establish both the identity and the structure of the species. In principle, infrared data are necessary for a complete vibrational analysis, but for many of the simple structures involved, an unambiguous conclusion can be drawn without infrared data. Many of the vibrational modes of metal complexes are at frequencies less than 400 cm− 1. Raman spectrophotometers provide useful information even down to 40 cm−1, but specialized equipment is needed for infrared studies in this spectral region. Furthermore, for many studies of interest to date, the complex ions exist in aqueous solution. These systems present no special difficulty for the Raman technique. On the other hand, infrared studies, especially quantitative studies, cannot easily be made on these systems, although the development of new cell-window materials and the attenuated total reflectance technique will probably make more infrared data available in the future. If the mercury 4358-Å line is used for Raman excitation, investigation is restricted to colorless or nearly colorless systems. The development of sources which utilize other excitation frequencies is enlarging the number and types of systems which can be investigated.


Raman Spectroscopy Molar Intensity Raman Band Raman Line Raman Intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1945.Google Scholar
  2. 2.
    F. A. Cotton, Chemical Applications of Group Theory, Interscience Publishers, New York, 1963, Chapter 3.Google Scholar
  3. 3.
    Ibid., Chapter 9.Google Scholar
  4. 4.
    J. E. Rosenthal and G. M. Murphy, Rev. Mod. Phys. 8: 317 (1936).CrossRefGoogle Scholar
  5. 5.
    A. G. Meister, F. F. Cleveland, and M. J. Murray, Am. J. Phys. 11: 239 (1943).CrossRefGoogle Scholar
  6. 6.
    E. B. Wilson, Jr., J. Chem. Phys. 2: 432 (1934).CrossRefGoogle Scholar
  7. 7.
    D. M. Sweeny, I. Nakagawa, S. Mizushima, and J. V. Quagliano, J. Am. Chem. Soc. 78: 889 (1956)CrossRefGoogle Scholar
  8. C.W.F.T. Pistorius, Z. Physik. Chem. (Frankfurt) 23: 206 (1960).CrossRefGoogle Scholar
  9. 8.
    R. S. Halford, J. Chem. Phys. 14: 8 (1946).CrossRefGoogle Scholar
  10. 9.
    R. S. Halford and O. A. Schaeffer, J. Chem. Phys. 14: 141 (1946).CrossRefGoogle Scholar
  11. 10.
    H. Winston and R. S. Halford, J. Chem. Phys. 17: 607 (1949).CrossRefGoogle Scholar
  12. 11.
    J. E. Griffiths and D. E. Irish, Inorg. Chem. 3: 1134 (1964).CrossRefGoogle Scholar
  13. 12.
    J. M. Smithson and R. J. P. Williams, J. Chem. Soc. 457 (1958).Google Scholar
  14. 13.
    R. E. Hester and R. A. Plane, J. Chem. Phys. 40: 411 (1964).CrossRefGoogle Scholar
  15. 14.
    D. E. Irish and G. E. Walrafen, J. Chem. Phys. 46 (January 1967), in press.Google Scholar
  16. 15.
    J. H. B. George, J. A. Rolfe, and L. A. Woodward, Trans. Faraday Soc. 49: 375 (1953).CrossRefGoogle Scholar
  17. 16.
    C. B. Baddiel, M. J. Tait, and G. J. Janz, J. Phys. Chem. 69: 3634 (1965).CrossRefGoogle Scholar
  18. 17.
    P. Job, Ann. Chim. (Paris) 9: 113 (1928).Google Scholar
  19. 18.
    W. C. Vosburgh and G. R. Cooper, J. Am. Chem. Soc. 63; 437 (1941).CrossRefGoogle Scholar
  20. 19.
    J. Nixon and R. A. Plane, J. Am. Chem. Soc. 84: 4445 (1962).CrossRefGoogle Scholar
  21. 20.
    F. J. C. Rossotti and H. Rossotti, The Determination of Stability Constants, McGraw-Hill Book Co., Inc., New York, 1961, p. 50.Google Scholar
  22. 21.
    L. I. Katzin and E. Gebert, J. Am. Chem. Soc. 72: 5455 (1950).CrossRefGoogle Scholar
  23. 22.
    W. Yellin and R. A. Plane, J. Am. Chem. Soc. 83: 2448 (1961).CrossRefGoogle Scholar
  24. 23.
    T. F. Young, L. F. Maranville, and H. M. Smith, “Raman Spectral Investigations of Ionic Equilibria in Solutions of Strong Electrolytes,” in: W. J. Hamer (ed.), The Structure of Electrolytic Solutions, John Wiley and Sons, Inc., New York, 1959, p. 35.Google Scholar
  25. 24.
    R. E. Hester and R. A. Plane, Inorg. Chem. 3: 769 (1964).CrossRefGoogle Scholar
  26. 25.
    P. M. Vollmar, J. Chem. Phys. 39: 2236 (1963).CrossRefGoogle Scholar
  27. 26.
    T. F. Young and D. E. Irish, “Solutions of Electrolytes,” in: H. Eyring (ed.), Annual Review of Physical Chemistry, Vol. 13, Annual Reviews, Inc., Palo Alto, California, 1962, p. 435.Google Scholar
  28. 27.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, third edition, Reinhold Publishing Corp., New York, 1958, p. 165.Google Scholar
  29. 28.
    E. Hogfeldt, Acta Chem. Scand. 17: 785 (1963).CrossRefGoogle Scholar
  30. 29.
    D. E. Irish, B. McCarroll, and T. F. Young, J. Chem. Phys. 39: 3436 (1963).CrossRefGoogle Scholar
  31. 30.
    M. Wolkenstein, Compt. Rend. Acad. Sci. U.R.S.S. 32: 185 (1941).Google Scholar
  32. 31.
    G. W. Chantry and R. A. Plane, J. Chem. Phys. 32: 319 (1960).CrossRefGoogle Scholar
  33. 32.
    G. E. Walrafen, J. Chem. Phys. 42: 485 (1965).CrossRefGoogle Scholar
  34. 33.
    R. B. Martin, J. Am. Chem. Soc. 81: 1574 (1959).CrossRefGoogle Scholar
  35. 34.
    M. M. Kreevoy and C. A. Mead, J. Am. Chem. Soc. 84: 4596 (1962).CrossRefGoogle Scholar
  36. 35.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, Inc., New York, 1963.Google Scholar
  37. 36.
    J. P. Mathieu, Compt. Rend. 231: 896 (1950).Google Scholar
  38. 37.
    R. L. Lafont, Compt. Rend. 244: 1481 (1957).Google Scholar
  39. 38.
    A. da Silveira, M. A. Marques, and N. M. Marques, Compt. Rend. 252: 3983 (1961)Google Scholar
  40. 39.
    P. L. Goggin and L. A. Woodward, Trans. Faraday Soc. 58: 1495 (1962).CrossRefGoogle Scholar
  41. 40.
    R. E. Hester and R. A. Plane, Inorg. Chem. 3: 768 (1964).CrossRefGoogle Scholar
  42. 41.
    H. Stammreich and R. Forneris, Spectrochim. Acta. 16: 363 (1960).CrossRefGoogle Scholar
  43. 42.
    J. D. S. Goulden, A. Maccoll, and D. J. Millin, J. Chem. Soc. 1635 (1950).Google Scholar
  44. 43.
    M. Delwaulle, Compt. Rend. 240: 2132 (1955).Google Scholar
  45. 44.
    J. A. Rolfe, D. E. Sheppard, and L. A. Woodward, Trans. Faraday Soc. 50: 1275 (1954).CrossRefGoogle Scholar
  46. 45.
    M. L. Delwaulle, Bull. Soc. Chim. France 1294 (1955).Google Scholar
  47. 46.
    D. A. Long and J. Y. H. Chau, Trans. Faraday Soc. 58: 2325 (1962).CrossRefGoogle Scholar
  48. 47.
    Z. Kecki, Spectrochim. Acta 18: 1165 (1962).Google Scholar
  49. 48.
    H. Gerding and H. Hautgraaf, Rec. Tray. Chim. 72: 21 (1953).CrossRefGoogle Scholar
  50. 49.
    L. A. Woodward and A. A. Nord, J. Chem. Soc. 3721 (1956).Google Scholar
  51. 50.
    Ibid., 2655 (1955).Google Scholar
  52. 51.
    L. A. Woodward and G. H. Singer, J. Chem. Soc. 716 (1958).Google Scholar
  53. 52.
    L. A. Woodward and M. J. Taylor, J. Chem. Soc. 4473 (1960).Google Scholar
  54. 53.
    L. A. Woodward and P. T. Bill, J. Chem. Soc. 1699 (1955).Google Scholar
  55. 54.
    M. L. Delwaulle, Compt. Rend. 238: 25–22 (1954).Google Scholar
  56. 55.
    L. A. Woodward and L. E. Anderson, J. Chem. Soc. 1284 (1957).Google Scholar
  57. 56.
    J. A. Creighton and L. A. Woodward, Trans. Faraday Soc. 58: 1077 (1962).CrossRefGoogle Scholar
  58. 57.
    D. F. C. Morris, E. L. Short, and D. N. Waters, J. Inorg. Nucl. Chem. 25: 975 (1963).CrossRefGoogle Scholar
  59. 58.
    D. F. C. Morris, E. L. Short, and D. N. Slater, Electrochim. Acta 8: 289 (1963).CrossRefGoogle Scholar
  60. 59.
    L. A. Woodward and H. L. Roberts, Trans. Faraday Soc. 52: 615 (1956).CrossRefGoogle Scholar
  61. 60.
    D. F. Heath and J. W. Linnett, Trans. Faraday Soc. 44: 561, 878 (1948).CrossRefGoogle Scholar
  62. 61.
    R. H. Busey and O. L. Keller, Jr., J. Chem. Phys. 41: 215 (1964).CrossRefGoogle Scholar
  63. 62.
    R. E. Hester, R. A. Plane, and G. E. Walrafen, J. Chem. Phys. 38: 249 (1963).CrossRefGoogle Scholar
  64. J. P. Mathieu and M. Lounsbury, Discussions Faraday Soc. No. 9 196 (1950).Google Scholar
  65. 64.
    H. Lee and K. Wilmshurst, Australian J. Chem. 17: 943 (1964).CrossRefGoogle Scholar
  66. 65.
    R. R. Miano and R. A. Plane, Inorg. Chem. 3: 987 (1964).CrossRefGoogle Scholar
  67. 66.
    H. H. Cloassen and A. J. Zielen, J. Chem. Phys. 22: 707 (1954).CrossRefGoogle Scholar
  68. 67.
    H. Siebert, Z. Anorg. Allgem. Chem. 275: 225 (1954).CrossRefGoogle Scholar
  69. 68.
    D. Bassi and O. Sala, Spectrochim. Acta 12: 403 (1958).CrossRefGoogle Scholar
  70. 69.
    H. Siebert, Z. Anorg. Allgem. Chem. 273: 21 (1953).CrossRefGoogle Scholar
  71. 70.
    G. E. Walrafen, J. Chem. Phys. 39: 1479 (1963).CrossRefGoogle Scholar
  72. 71.
    H. Colm, J. Chem. Soc. 4282 (1952).Google Scholar
  73. 72.
    E. R. Lippincott, J. A. Psellos, and M. C. Tobin, J. Chem. Phys. 20: 536 (1952).CrossRefGoogle Scholar
  74. 73.
    T. G. Spiro, Inorg. Chem. 4: 731 (1965).CrossRefGoogle Scholar
  75. 74.
    H. J. Bernstein and G. Allen, J. Opt. Soc. Am. 45: 237 (1955).CrossRefGoogle Scholar
  76. 75.
    D. G. Rea, J. Opt. Soc. Am. 49: 90 (1959).Google Scholar
  77. 76.
    D. D. Tunnicliff and A. C. Jones, Spectrochim. Acta 18: 579 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Press 1967

Authors and Affiliations

  • D. E. Irish
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations