A Review of the Electrical Properties and Microstructure of Vanadium Phosphate Glasses

  • D. L. Kinser
  • L. K. Wilson


Studies of the electrical properties of glasses in the VO2-V2O5-P2O5 system are reviewed. Electron microstructural studies on glasses throughout the system revealed glass-glass immiscibility over a wide area. Correlation of the electrical properties and the corresponding micro structures indicates that the previously observed conductivity maxima in this system is a consequence of the microstructure as well as the electronic behavior of this system. There is evidence for the existence of a second conductivity maxima near the V4+=V5+ composition although glasses in this composition range are difficult to prepare. Of these two maxima one is the result of microstructural segregation while the second is a consequence of the hopping conduction mechanism. It is thus concluded that the anomalous behavior of this system is in fact not anomalous in an electronic sense, but is a consequence of microstructural features of the system.


Electron Paramagnetic Resonance Seebeck Coefficient Phosphate Glass Vanadium Oxide Vanadium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.E. Roscoe, Phil. Trans. Roy. Soc. 158 1–27 (1867).Google Scholar
  2. 2.
    G. Tammann, E. Jenckel, Z. Anorg. Allgem Chem. 184 416–420 (1929).CrossRefGoogle Scholar
  3. 3.
    E.P. Denton, H. Rawson, J.E. Stanworth, Nature 173 1030–1032 (1954).CrossRefGoogle Scholar
  4. 4.
    P.L. Baynton, H. Rawson, J.E. Stanworth, J. Elchem Soc. 104 237–240 (1957).CrossRefGoogle Scholar
  5. 5.
    M. Munakata, S. Kawamura, J. Asahara, M. Iwamoto, J. Ceram. Assoc. Japan 67 344–353 (1959).CrossRefGoogle Scholar
  6. 6.
    M. Munakata, Sol. St. Electronics 1 159–163 (1960).Google Scholar
  7. 7.
    V.A. Ioffe, I.B. Patrina, I.S. Poberouskaya, Solid State 2 609–614 (1960).Google Scholar
  8. 8.
    L.A. Grenchanik, N.V. Petrouykh, V.G. Karpechenko, Soviet Physics-Solid State 2 1908–1915 (1960).Google Scholar
  9. 9.
    B. Nador, Steklo i Keramika 17, 18–21 (1960).Google Scholar
  10. 10.
    I.I. Kitaigorodskii, V.K. Frolov, Kuo-Cheng, Steklo i Keramika 17 5–7 (1960).Google Scholar
  11. 11.
    D.P. Hamblen, E.A. Weidel, G.E. Blair, J. Amer. Ceram. Soc. 46 499–504 (1963).CrossRefGoogle Scholar
  12. 12.
    Bh. V. Janakirama-Rao, J. Am. Ceram. Soc. 49, 605–609 (1966).CrossRefGoogle Scholar
  13. 13.
    H.H. Nestor, W.D. Kingery, Proc. Intern. Congress du Verre, 106-110.Google Scholar
  14. 14.
    R.R. Heikes, R.W. Ure, Thermoelectricity: Science and Engineering, Interscience Publishers, New York (1961) 75–82.Google Scholar
  15. 15.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, Oxford, London (1950).Google Scholar
  16. 16.
    L.L. Hench, D.A. Jenkins, Phys. Stat. Sol. 20 327–330 (1967)CrossRefGoogle Scholar
  17. 17.
    H.R. Killias, Phys. Letters 20 5–6 (1966).CrossRefGoogle Scholar
  18. 18.
    T. Holstein, Am. Phys. (USA) 343–389 (1959).Google Scholar
  19. 19.
    L. Friedman, Phys. Rev. 135A 233–246 (1964).CrossRefGoogle Scholar
  20. 20.
    R.M. Brown, PhD Thesis, University of Illinois (1966).Google Scholar
  21. 21.
    T. Allersma, J.D. Mackenzie, J. Chem. Phys. 47 1406–9 (1967)CrossRefGoogle Scholar
  22. 22.
    T.N. Kennedy, R. Hakin, J.D. Mackenzie, Mat. Res. Bull. 193–201 (1967).Google Scholar
  23. 23.
    G.S. Linsley, PhD Thesis, University of Sheffield (1968).Google Scholar
  24. 24.
    G.S. Linsley, A.E. Owen, F.M. Hayatee, J. Non-Cryst. Solids 4, 208–219 (1970).CrossRefGoogle Scholar
  25. 25.
    K.W. Hansen, J. Electrochem. Soc. 112 994–6 (1966).CrossRefGoogle Scholar
  26. 26.
    G.W-. Anderson, F.V. Luers, J. Appi. Phys. 22. 1634–38 (1968).CrossRefGoogle Scholar
  27. 27.
    F.V. Luers, G.W. Anderson, Proceedings, 26th Annual Electron Microscopy Soc. of America, C.J. Arceneaux, ed. (1968) 422.Google Scholar
  28. 28.
    A.P. Schmid, J. Appi. Phys. 39 3140–49 (1968).CrossRefGoogle Scholar
  29. 29.
    A.P. Schmid, J. Appi. Phys. 40 4128–36 (1969).CrossRefGoogle Scholar
  30. 30.
    R.H. Caley, M. Krishna Murthy, J. Am. Ceram. Soc. 53, 254–57 (1970).CrossRefGoogle Scholar
  31. 31.
    M. Sayer, A. Mansingh, J.M. Reyes, G.F. Lynch, Second Int. Conf. on Low Mobility Materials, Taylor and Francis Ltd., London (1972) 115–123.Google Scholar
  32. 32.
    G.F. Lynch, M. Sayer, S.L. Segel, G. Rosenblatt, J. Appi. Phys. 42 2587–91 (1971).CrossRefGoogle Scholar
  33. 33.
    M. Sayer, A. Mansingh, J.M. Reyes, G. Rosenblatt, J. Appi. Phys. 42 2857–64 (1971).CrossRefGoogle Scholar
  34. 34.
    E.J. Friebele, L.K. Wilson, D.L. Kinser, J. Am. Ceram. Soc. 55 164–68 (1972).CrossRefGoogle Scholar
  35. 35.
    F.R. Lansberger, P.J. Bray, J. Chem. Phys. 53 2757–68 (1970).CrossRefGoogle Scholar
  36. 36.
    L.K. Wilson, E.J. Friebele. Kinser, in Amorphous Magnetism, H.O. Hooper and A.M. de Graaf, eds., Plenum, New York (1973).Google Scholar
  37. 37.
    A. Kato, R. Nishibashi, M. Nagano, I. Mochida, J. Am. Ceram. Soc. 55 183–85 (1972).CrossRefGoogle Scholar
  38. 38.
    D.L. Kinser, E.J. Friebele (submitted to J. Am. Ceram. Soc.).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • D. L. Kinser
    • 1
  • L. K. Wilson
    • 1
  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations