Advertisement

The Problem of Chemical Inhomogeneities in Electronic Materials

  • Harry C. Gatos
  • August F. Witt

Abstract

Chemical inhomogeneities are present in semiconductors (and generally in all solids) solidified under destabilizing thermal gradients. Their origin is associated with temperature fluctuations at the growth interface (leading to flucutations in the microscopic rate of growth) and/or with fluctuations of the boundary layer thickness. The formation of such inhomogeneities in semiconductors, such as InSb, Ge and Si, is discussed in the light of results obtained with the aid of “rate striations” which allow the determination of the microscopic growth rate and of the morphological characteristics of the growth interface. The quantitative relationship between impurity dopant concentration and the microscopic growth rate is presented.

Keywords

Rayleigh Number Minority Carrier Lifetime Growth Interface Oscillatory Instability Chemical Inhomogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Laudise, The Growth of Single Crystals, Prentice-Hall (1970).Google Scholar
  2. 2.
    J.A. Burton, E.D. Kolb, W.P. Slichter, J.D. Struthers, J. Chem. Phys. 21, 1991 (1953).Google Scholar
  3. 3.
    K. Morizane, A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 114, 738 (1967).CrossRefGoogle Scholar
  4. 4.
    J.A. Burton, R.C. Prim, W.P. Slichter, J. Chem. Phys. 21 1987 (1953).Google Scholar
  5. 5.
    J.R. Carruthers, Canad. Met. Quart. 5_ 55 (1963).Google Scholar
  6. 6.
    M.D. Banus, H.C. Gatos, J. Electrochem. Soc. 109 829 (1962).CrossRefGoogle Scholar
  7. 7.
    P.R. Camp, J. Appl. Phys. 25 459 (1954).CrossRefGoogle Scholar
  8. 8.
    J.A.M. Dikhoff, Solid-State Electron. 1, 202 (1960).CrossRefGoogle Scholar
  9. 9.
    H.C. Gatos, A.J. Strauss, M.C. Lavine, T.C. Harman, J. Appl. Phys. 32, 2057 (1961).CrossRefGoogle Scholar
  10. 10.
    E. Billig, Proc. R. Soc. A229 346 (1955).CrossRefGoogle Scholar
  11. 11.
    K.F. Hulme, J.B. Mullin, Phil. Mag. 4, 1286 (1959).CrossRefGoogle Scholar
  12. 12.
    K. Morizane, A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 113, 747 (1968).CrossRefGoogle Scholar
  13. 13.
    A3J, Strauss, Solid-State Electron.. 5, 97 (1962).CrossRefGoogle Scholar
  14. 14.
    A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 113, 808 (1966).CrossRefGoogle Scholar
  15. 15.
    A.F. Witt, H.C. Gatos, in Semiconductor Silicon, R.R. Haberecht and E.L. Kern, eds., Electrochemical Society, Inc.5 New York (1969) 146.Google Scholar
  16. 16.
    A. Miiller, M. Wilhelm, Z. Naturforsch. 19a 254 (1964).Google Scholar
  17. 17.
    W.R. Wilcox, in Fractional Solidification, Vol. I, Zief and W.R. Wilcox, eds. Arnold, London (1967).Google Scholar
  18. 18.
    J.R. Carruthers, J. Electrochem. Soc. 114 959 (1967); W.S. Robertson, Brit. J. Appl. Phys. 17, 1047 (1966).Google Scholar
  19. 19.
    R. Singh, A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 115, 112 (1968).CrossRefGoogle Scholar
  20. 20.
    A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 115 70 (1968).CrossRefGoogle Scholar
  21. 21.
    A.F. Witt, M. Lichtensteiger, H.C. Gatos, J. Electrochem. Soc. (in press).Google Scholar
  22. 22.
    W.G. Cochran, Proc. Camb. Phil. Soc. 30, 365 (1934).Google Scholar
  23. 23.
    K.M. Kim, A.F. Witt, H.C. Gatos, J. Electrochem. Soc. 119, 1218 (1972).CrossRefGoogle Scholar
  24. 24.
    R.F. Sekerka, J. Cryst. Growth 3, 4 71 (1968).CrossRefGoogle Scholar
  25. 25.
    R.T. Delves, J. Cryst. Growth 3, 4 562 (1968).CrossRefGoogle Scholar
  26. 26.
    R. Singh, A.F. Witt, H.C. Gatos, J. Appl. Phys. 41, 2730 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Harry C. Gatos
    • 1
  • August F. Witt
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations