Advertisement

Radiation Defects in Heavily Irradiated GaAs

  • E. Yu. Brailovskii
  • V. N. Broudnyi
  • I. D. Konozenko
  • M. A. Krivov

Abstract

Electrical properties and IR-absorption in GaAs irradiated at 80°C with various doses of 2.0 MeV electrons were investigated. Heavily irradiated specimens of n- and p-type GaAs are characterized by very low conductivity, carrier density and Hall mobility and large optical absorption in the interval of 0.5–1.5 eV. With increasing dose, the hole mobility, in contrast to electron mobility, decreases initially and passes through a minimum that is caused by recharging of Ev + (0.20 − 0.25) eV donor centres. The absorption spectra of n- and p-type irradiated crystals are identical. We observed structureless absorption and some absorption bands 0.96–0.98 eV being the dominant one. The temperature dependence of conductivity and thermostimulated current measurements indicate the presence of Ev + (0.45 ± 0.05) and Ev + (0.25 ± 0.05) eV centres which are very much like those introduced by heat treatment. It is found that upon annealing of heavily irradiated p-GaAs, the hole mobility exhibits very large reverse annealing at 100–200°C, caused by the creation during the annealing process of additional Ev + (0.20 − 0.25) eV centres. Results of isochronal annealing on carrier concentration in p-GaAs suggest that a large concentration of point defects agglomerate, forming the clusters whose annealing takes place at a temperature above 400°C.

Keywords

Fast Neutron Irradiate Sample Hole Concentration Electron Irradiation Hole Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.L. Vook, J. Phys. Soc. Japan 18 Suppl. II, 190 (1963).Google Scholar
  2. 2.
    F.L. Vook, Phys. Rev. 115, A1742 (1964).CrossRefGoogle Scholar
  3. 3.
    R. Coates, E.W. Mitchell, J. Phys. C: Sol. State Phys..5, L 113 (1972).Google Scholar
  4. 4.
    E. Yu. Brailovskii, V.N. Broudnyi, M.A. Krivov, V.B. Red’ko, Fiz. i Tekh. Poluprovodnikov 6, 2075 (1972).Google Scholar
  5. 5.
    K.V. Vaidyanathan, L.A.K. Watt, M.L. Swanson, Phys. stat. sol. AIO 127 (1972).Google Scholar
  6. 6.
    V.C. Burkig J.L. McNickols, W.S. Ginell, J. Appi. Phys. 40, 3268 (1969).CrossRefGoogle Scholar
  7. 7.
    E, Yu. Brailovskii, V.N. Broudnyi, Fiz. i Tekh. Poluprovodnikov 5, 1248 (1971).Google Scholar
  8. 8.
    L.W. Aukerman, R.D. Graft, Phys. Rev. 127, 1576 (1962).CrossRefGoogle Scholar
  9. 9.
    K. Wohlleben, W. Beck, Z. Naturforsch. 21a 1057 (1966).Google Scholar
  10. 10.
    L. Borghi ? P. De Stepano, P. Mansherretti, J. Appi. Phys. 41 4665 (1970).Google Scholar
  11. 11.
    J. Blanc, R.H. Bube, L.R. Weisberg, J. Phys. Chem. Solids 25 225 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • E. Yu. Brailovskii
    • 1
    • 2
  • V. N. Broudnyi
    • 1
    • 2
  • I. D. Konozenko
    • 1
    • 2
  • M. A. Krivov
    • 1
    • 2
  1. 1.Institute of Nuclear Research Academy of Sciences of the Ukrainian SSRKievUkraine
  2. 2.Siberian Physico-Technical InstituteTomsk UniversityTomskUSSR

Personalised recommendations