Adsorptive Behaviour of Alkali and Alkaline-Earth Cations onto Quartz

  • Selim F. Estefan
  • Mounir A. Malati


Adsorption isotherms of the alkali and alkaline-earth cations onto quartz surfaces were determined employing radioactive tracer techniques at different temperatures and pH values. For each temperatures the adsorption affinity follows the lyotropic sequence, i. e. 5 for cations of a given charges the affinity decreases with the increase in the radius of the hydrated cation. The results of the adsorption and zeta-potential measurements indicate that the hydrated alkaline-earth cations are adsorbed in the quartz/electrolyte double layer and may be considered to be held electrostatically in the outer Helmholtz layer. The cation/quartz surface attraction seems to play an important role in fixing the collector to the mineral particles in flotation.


Adsorption Isotherm Adsorptive Behaviour Alkali Metal Cation Quartz Surface Quartz Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Onzo Jyo, Bul. Res. Inst. Mineral Dressing and Metal. Tohoku Univ. Japan 9:1 (1953).Google Scholar
  2. 2.
    M.A. Malati, S.F, Estefan, J. Coll. amp; Interface Sci. 22 306 (1966).CrossRefGoogle Scholar
  3. 3.
    M.A. Malati, S.F. Estefan, Disc. Faraday Soc. S2 377 (1971).Google Scholar
  4. 4.
    A.M. Gaudin, D.W. Fuerstenau, Trans. AIME 202 66 (1955).Google Scholar
  5. 5.
    G.Y. Onoda, D.W. Fuerstenau, 7th Int. Mineral Proc. Congress, New York (1964) 301.Google Scholar
  6. 6.
    S.M. Ahmed, A.B. Van Cleave, Can. J. Chem. Eng. Feb. (1965) 23–26; 27–29.Google Scholar
  7. 7.
    Th. F. Tadros, J. Lyklema, J. Electroanal. Chem. 22 1 (1969).Google Scholar
  8. 8.
    M.A. Malati, S.F. Estefan, J. Appl. Chem. 17 209 (1967).Google Scholar
  9. 9.
    M.A. Malati, A.A. Youssef, S.F. Estefan, Chimie et Industrie 103 1347 (1970).Google Scholar
  10. 10.
    T.R.E. Kressman, J.A. Kitchener, J. Chem. Soc. 29 1190 (1949).Google Scholar
  11. 11.
    Th. F. Tadros, J. Lyklema, J. Electroanal. Chem. 17 267 (1968).Google Scholar
  12. 12.
    D.L. Dugger, J.H. Stanton, B.N. Irby, B.L. McConnell, W.W. Cummings, R.W. Maatman, J. Phys. Chem. 68 757 (1964).Google Scholar
  13. 13.
    H.T. Tien, J. Phys. Chem. 69 350 (1965).Google Scholar
  14. 14.
    G.R. Wiese, R.O. James, T.W. Healey, Disc. Faraday Soc. 52 302 (1971).Google Scholar
  15. 15.
    S. Levine, Disc. Faraday Soc. 52 320 (1971).Google Scholar
  16. 16.
    F. Dumont, A. Watillon, Disc. Faraday Soc. 52 352 (1971).Google Scholar
  17. 17.
    H.S. Frank, W.Y. Wen, Disc. Faraday Soc. 24 133 (1957).Google Scholar
  18. 18.
    W. Stumm, C.P. Ruang, S.R. Jankins, Croatica Chemica Acta 42 223 (1970).Google Scholar
  19. 19.
    Y.G. Bérubé, P.L. De Bruya3 J. Coll. & Interface Sci. 27 305 (1968).Google Scholar
  20. 20.
    I, Shainberg, W.D. Kemper, Soil Sci. Soc. of Amer. Proc. 30 700 (1966).Google Scholar
  21. 21.
    A.W. Adamson, Physical Chemistry of Surfaces, 2nd ed., John Wiley amp; Sonsy London (1967).Google Scholar
  22. 22.
    A.A. Youssef, M.A. Arafa, M.A. Malati, J. Appi. Chem. Biotechnol. 21 200 (1971).Google Scholar
  23. 23.
    C. Mellgren5 R.J. Gochin, H.L. Shergold3 J.A. Kitchener3 Intern. Mineral Processing Congr., London (April, 1973), Preprint 21.Google Scholar
  24. 24.
    S.F. Estefan, M.A, Malati, submitted to Institution of Mining amp; Metallurgy.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Selim F. Estefan
    • 1
  • Mounir A. Malati
    • 1
    • 2
  1. 1.Metallurgy DepartmentNational Research CenterCairoEgypt
  2. 2.Medway and Maidstone College of TechnologyChatham, KentEngland

Personalised recommendations