Advertisement

Magnetic and X-Ray Crystallographic Studies of a Series of Nitrosodisulphonates and Hydroxylamine-N, N-Disulphonates

  • B. D. Perlson
  • D. B. Russell
  • R. J. Guttormsom
  • B. E. Robertson

Abstract

A series of nitrosodisulphonate and two series of hydroxylamine-N, N-disulphonate salts with monovalent cations have been prepared and characterised. The crystal structure of one of the rubidium hydroxylamine-B3E-disulphonates has been determined to be triclinic with space group pi and shown to contain the anion \({\left\{ {\left[ {ON{{\left( {S{O_3}} \right)}_2}} \right]H} \right\}^{5 - }}\). This salt, on irradiation with \(Co_\gamma ^{60}\) was found to contain an S=1 species with \D\/hc = 0.048 cm−1 and \E\/hc = 0.002 cm−1. Two crystalline modifications of potassium nitrosodisulphonate and two crystalline modifications of rubidium nitrosodisulphonate were found to have thermally accessible triplet states.

Keywords

Crystalline Modification Water Oxygen Atom Exhibit Room Temperature Field Splitting Parameter Symmetric Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    a) R.W. Asmussen, Z. Anorg. Chem. 212 317 (1973). (b) W.A. Moser, R.A. Howie, J. Chem. Soc. (A) 3039 (1968).Google Scholar
  2. 2.
    A. Hantzsch, W. Semple, Ber. 28 2744 (1895).Google Scholar
  3. 3- T. Cliu, G. Pake, D. Paul, I. Townsend, S. Weissman, J. Phys. Chem. 51, 504 (1953).Google Scholar
  4. 4.
    D.L. Fillmore, B.L, Wilson, Inorg. Chem. 7 152 (1968).Google Scholar
  5. 5.
    J.R. Morton, personal communication.Google Scholar
  6. 6.
    P.T, Hamrick, H. Shields, T. Gangwer, J. Chem. Phys. 57 5029 (1972).Google Scholar
  7. 7.
    G. Germain, M.M. Woolfson, Acta Cryst. B24 31 (1968).Google Scholar
  8. 8, C.K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1965).Google Scholar
  9. 9.
    R.A. Howie, L.S.D. Glaser, W. Moser, J. Chem. Soc. (A) 3043 (1968).Google Scholar
  10. 10.
    R. Karlsson, D. Losman, Chem. Comm. 1972, p. 629.Google Scholar
  11. 11.
    D.W.J. Cruickshank, J. Chem. Soc. 1961, p. 5484.Google Scholar
  12. 12.
    S.J. Weissman, D. Banfill, J.A.C.S. 75, 2534 (1953).Google Scholar
  13. 13.
    M.S. de Groot, J.H. van der Waals, Mol. Phys. 35, 1002 (1963).Google Scholar
  14. 14.
    B.D. Perlson, D.B. Russell, Chem. Comm. 1972, p. 69.Google Scholar
  15. 15.
    Details to be published elsewhere.Google Scholar
  16. 16.
    Details to be published elsewhere.Google Scholar
  17. 17.
    Calculated using the Van Vleck formulation. (Van Vleck, The Theory of Electric and Magnetic Susceptibilities, 1932, p. 235)Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • B. D. Perlson
    • 1
  • D. B. Russell
    • 1
  • R. J. Guttormsom
    • 2
  • B. E. Robertson
    • 2
  1. 1.University of SaskatchewanCanada
  2. 2.University of SaskatchewanCanada

Personalised recommendations