Advertisement

Synthesis: A Comparative Look at Vertebrates

  • R. Lahue
  • W. C. Corning

Abstract

The comparative researcher’s frame of reference usually encompasses more than an interest in an animal for its own sake. We hope to arrive at some general principles that will be applicable to other systems, and in psychology this “other system” is usually man. Claims that interest in invertebrates can be pursued without a vertebrate perspective are difficult to support when the research is organized around vertebrate paradigms and is concerned with vertebrate categories such as “learning,” “aggression,” “social behavior,” etc. With this anthropocentric bias it is easy to understand why the invertebrates remain the “forgotten majority;” yet, in spite of the Procrustean beds that we force them into, invertebrates appear to have achieved some vertebratelike learning capacities to a remarkable degree.

Keywords

Abdominal Ganglion Rock Lobster Response Decrement Vertebrate Brain Dominant Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, F. D., Palka, J., Peeke, H. V. S., and Willows, A. O. D., 1972, Model neural systems for the neurobiology of learning, Behav. Biol., 7, 1–24.PubMedGoogle Scholar
  2. Adametz, J. H., 1959, Rate of recovery of functioning in cats with rostral reticular lesions, J. Neurosurg., 16, 85–97.PubMedGoogle Scholar
  3. Adey, W. R., 1969, Slow electrical phenomena in the central nervous system, Neurosci. Res. Program Bull., 7, 75–180.Google Scholar
  4. Agranoff, B. W., 1967, Agents that block memory, in “The Neurosciences” (G. D. Quarton, T. Melnechuk, and F. O. Schmitt, eds.)., Rockefeller University Press, New York.Google Scholar
  5. Appel, S. H., Davis, W., and Scott, S., 1967, Brain polysomes: response to environmental stimulation, Science, (Wash. D.C.), 157, 836–838.Google Scholar
  6. Applewhite, P., 1968, Temperature and habituation in a protozoan, Nature (London), 219, 91–92.Google Scholar
  7. Applewhite, P., Gardner, F. T., and Lapan, E., 1969, Physiology of habituation learning in a protozoan, Trans. N.Y. Acad. Sci., 31, 842–849.Google Scholar
  8. Applewhite, P., and Morowitz, H. J., 1966, The micrometazoa as model systems for studying the physiology of memory, Yale J. Biol. Med., 39, 90–105.PubMedGoogle Scholar
  9. Applewhite, P., and Morowitz, H. J., 1967, Memory and the microinvertebrates, in, “Chemistry of Learning” (W. C. Corning and S. C. Ratner, eds.), Plenum Press, New York.Google Scholar
  10. Baltzer, F., 1923, Beitrage zur Sinnesphysiologie and Psychologie der Webespinnen, Mitt. Naturforsch. Ges. Bern. 163–187.Google Scholar
  11. Beritoff, J. S., 1971, “Vertebrate Memory: Characteristics and Origin,” Plenum Press, New York.Google Scholar
  12. Bitterman, M. E., 1965, Phyletic differences in learning, Am. Psychol., 15, 709–712.Google Scholar
  13. Bruner, J., and Kennedy, D., 1970, Habituation: Occurrence at a neuromuscular junction, Science, (Wash. D.C.), 169, 92–94.Google Scholar
  14. Bullock, T. H., 1974, Comparisons between invertebrates and vertebrates in nervous organization, in “The Neurosciences Third Study Program,” MIT Press, Cambridge, Mass.Google Scholar
  15. Bullock, T. H., and Horridge, G. A., 1965, “Structure and Function in the Nervous Systems of Invertebrates,” Freeman, San Francisco.Google Scholar
  16. Carew, J. J., Pinsker, H. M., and Kandel, E. R., 1972, Long-term habituation of a defensive withdrawal reflex in Aplysia, Science (Wash. D.C.), 175, 451–454.Google Scholar
  17. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E., 1969, Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex inAplysia, Science (Wash. D.C.), 167, 1745–1748.Google Scholar
  18. Clark, R. B., 1960a, Habituation of the polychaete Nereis to sudden stimuli. I. General properties of the habituation process, Anim. Behav., 8, 82–91.Google Scholar
  19. Clark, R. B., 1960b, Habituation of the polychaete Nereis to sudden stimuli. II. The biological significance of habituation, Anim. Behav., 8, 92–103.Google Scholar
  20. Cohen, M. J., 1967, Some cellular correlates of behavior controlled by an insect ganglion, in “Chemistry of Learning” (W. C. Corning and S. C. Ratner, eds.), Plenum Press, New York.Google Scholar
  21. Cohen, M. J., 1970, A comparison of invertebrate and vertebrate central neurons, in “The Neurosciences, Second Study Program,” Rockefeller University Press, New York.Google Scholar
  22. Cook, A., 1971, Habituation in a freshwater snail (Limnaea stagnalis), Anim. Behav., 19, 463–574.Google Scholar
  23. Corning, W. C., 1967, Regeneration and retention of acquired information, in “Chemistry of Learning” (W. C. Corning and S. C. Ratner, eds.), Plenum Press, New York.Google Scholar
  24. Corning, W. C., and Lahue, R., 1971, Reflex “training” in frogs, Psychonomic Sci. Sect. Anim. Physiol. Psychol, 23, 119–120.Google Scholar
  25. Corning, W. C., and Lahue, R., 1972, Invertebrate strategies in comparative learning studies, Am. Zool., 12, 455–469.Google Scholar
  26. Corning, W. C., Steffy, R. A., and Lahue, R., 1974, Labels and realities in psychiatric classification: A polythetic strategy, in preparation.Google Scholar
  27. Corning, W. C., and Von Burg, R., 1968, Behavioral and neurophysiological investigations of Limulus polyphemus, in “Neurobiology of Invertebrates” (J. Salanki, ed.), Plenum Press, New York.Google Scholar
  28. Dyal, J. A., 1971, Transfer of behavioral bias: Reality and specificity, in “Chemical Transfer of Learned Information” (E. J. Fjerdingstad, ed.), American Elsevier, New York.Google Scholar
  29. Evans, S. M., 1969, Habituation of the withdrawal response in nereid polychaetes. I. The habituation process inNereis diversicolor, Biol. Bull. (Woods Hole), 137, 105–117.Google Scholar
  30. Fisher, A. E., 1956, Maternal and sexual behavior induced by intracranial chemical stimulation, Science (Wash. D.C.), 124, 228–229.Google Scholar
  31. Fjerdingstad, E. J. (ed.), 1971, “Chemical Transfer of Learned Information,” American Elsevier, New York.Google Scholar
  32. Flavell, J. H., 1963, “The Developmental Psychology of Jean Piaget,” Van Nostrand, New York.Google Scholar
  33. Franzisket, L., 1963, Characteristics of instinctive behavior and learning in reflex activity of the frog, Anim. Behav., 11, 318–334.Google Scholar
  34. Gaito, J., 1972, “Macromolecules and Behavior” (2nd ed.), Appleton-Century-Crofts, New York.Google Scholar
  35. Gardner, L. E., 1968, Retention and overhabituation of a dual-component response in Lumbricus terrestris, J. Comp. Physiol. Psychol., 66, 315–318.PubMedGoogle Scholar
  36. Groves, P. M., and Thompson, R. F., 1970. Habituation: A dual-process theory, Psychol Rev., 77, 419–450.PubMedGoogle Scholar
  37. Haigier, H. J., and Von Baumgarten, R. J., 1972, Facilitation of excitatory post-synaptic potentials in the giant cell in the left pleural ganglion of Aplysia calijornica, Comp. Biochem. Physiol, 41 A, 7–16.Google Scholar
  38. Harden, C. M., 1973, Behavioral modification ofStentor coeruleus, Reprinted in Vol. 1, Chapter 2, pp. 67–72.Google Scholar
  39. Hazlett, B. A., 1971, Influence of rearing conditions on initial shell entering behavior of a hermit crab (Decapodapaguridea), Crustaceana (Leiden), 20, 167–170.Google Scholar
  40. Held, R. M., 1965, Plasticity in sensory-motor systems. Sci. Am., 220, 84–94.Google Scholar
  41. Hess, W. R., 1957, “The Functional Organization of the Diencephalon,” Grune & Stratton, New York.Google Scholar
  42. Hirsch, H. V. B., 1972, Role of function in the development and maintenance of the cat visual system, Neurosci. Res. Program Bull, 10, 291–293.Google Scholar
  43. Holmgren, B., and Frenk, S., 1961, Inhibitory phenomena and habituation at the neuronal level, Nature (Lond.), 192, 1294–1295.Google Scholar
  44. Horn, G., and Rowell, C. H. F., 1968, Medium and long-term changes in the behavior of visual neurones in the tritocerebrum of locusts, J. Exp. Biol, 49, 143–169.Google Scholar
  45. Horridge, G. A., 1959, Analysis of the rapid responses of Nereis and Harmothoe (Annelida), Proc. R. Soc. Lond. B. Biol. Sci., 150, 245–262.PubMedGoogle Scholar
  46. Horridge, G. A., 1962, Learning leg position by the ventral nerve cord in headless insects, Proc. R. Soc. Lond. B. Biol Sci., 157, 33–52.Google Scholar
  47. Horridge, G. A., 1968, “Interneurons,” Freeman, San Francisco.Google Scholar
  48. Hoyle, G., 1970, Cellular mechanisms underlying behavior-neuroethology, Adv. Insect Physiol, 12, 349–444.Google Scholar
  49. Hubel, D. H., and Wiesel, T. N., 1963, Receptive fields of cells in striate cortex of very young, visually inexperienced kittens, J. Neurophysiol, 26, 994–1002.PubMedGoogle Scholar
  50. Hyden, H., 1967, Biochemical changes accompanying learning, in “The Neurosciences” (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), Rockefeller University Press, New York.Google Scholar
  51. Jensen, D. D., 1967, Polythetic operationism and the phylogeny of learning, in “Chemistry of Learning” (W. C. Corning and S. C. Ratner, eds.), Plenum Press, New York.Google Scholar
  52. John, E. R., 1967, “Mechanisms of Memory,” Academic Press, New YorkGoogle Scholar
  53. John, E. R., 1972, Switchboard versus statistical theories of learning and memory, Science (Wash., D.C.), 177, 850–864.Google Scholar
  54. John, E. R., and Killam, K. F., 1960, Electrophysiological correlates of differential approachavoidance conditioning in the cat, J. Nerv. Ment. Dis., 131, 183.PubMedGoogle Scholar
  55. Kandel, E. R., Castellucci, V., Pinsker, H., and Kupferman, I., 1970, The role of synaptic plasticity in the short-term modification of behavior, in “Short-term Changes in Neural Activity and Behaviour” G. Horn and R. A. Hinde, eds., Cambridge University Press, Cambridge, England.Google Scholar
  56. Kandel, E. R., and Taue, L., 1965, Mechanisms of heterosynaptic facilitation in the giant cell of the abdominal ganglion ofAplysia depilans, J. Physiol. (Lond.), 181, 28–47.Google Scholar
  57. Kennedy, D., Selverston, A. I., and Remler, M. P., 1969, Analysis of restricted neural networks, Science Wash., D.C., 164, 1488–1495.Google Scholar
  58. Kerkut, G. A., Oliver, G. W. C., Rick, J. T., and Walker, R. J., 1970, The effects of drugs on learning in a simple preparation, Comp. Gen. Pharmacol., I, 437–483.Google Scholar
  59. Kinastowski, W., 1963a, Der Einfluss der mechanischen Reize auf die Kontraktilitat von Spirostomum ambiguum, Acta Protozool., 1, 201–222.Google Scholar
  60. Kinastowski, W., 1963b, Das Problem “des lernes” bei Spriostomum ambiguum, Acta Protozool., 1, 233–236.Google Scholar
  61. Krasne, F. B., 1969, Excitation and habituation of the crayfish escape reflex: The depolarizing response in lateral giant fibres of the isolated abdomen, J. Exp. Biol., 50, 29–46.PubMedGoogle Scholar
  62. Krasne, F. B., 1973, Learning in Crustacea, in “Invertebrate Learning,” Vol. 2 (W. C. Corning, J. A. Dyal, and A. O. D. Willows, eds.), Plenum Press, New York.Google Scholar
  63. Krasne, F. B., and Roberts, A., 1967, Habituation of crayfish escape response during release from inhibition induced by Picrotoxin, Nature (Lond.), 215, 769–770.Google Scholar
  64. Krasne, F. B., and Woodsmall, K. S., 1969, Waning of the crayfish escape response as a result of a repeated stimulation, Anim. Behav., 17, 416–424.PubMedGoogle Scholar
  65. Kristan, W. B., Jr., 1971, Plasticity of firing patterns in neurons of Aplysia pleural ganglion, J. Neurophysiol., 34, 321–338.PubMedGoogle Scholar
  66. Kuenzer, P. P., 1958, Verhaltenphysiologische Untersuchungen über das Zucken des Regenwurms, Z. Tierpsychol., 15, 31–49.Google Scholar
  67. Lahue, R., 1974, Habituation characteristics and mechanisms in the abdominal ganglia of Limulus polyphemus, unpublished doctoral dissertation, University of Waterloo, Waterloo, Ontario, Canada.Google Scholar
  68. Lahue, R., and Corning, W. C., 1971a, Habituation in Limulus abdominal ganglia, Biol. Bull. Woods Hole, 140, 427–439.Google Scholar
  69. Lahue, R., and Corning, W. C., 1971b, Plasticity in Limulus abdominal ganglia: An exercise in paleopsychology, Can. Psychol., 12, Suppl. 2, 193–194.Google Scholar
  70. Lahue, R., and Corning, W. C., 1973a, Incremental and decremental processes in Limulus ganglia: Stimulus frequency and ganglion organization influences, Behav. Biol., 8, 637–653.PubMedGoogle Scholar
  71. Lahue, R., and Corning, W. C., 1973b, unpublished observations.Google Scholar
  72. Lashley, K. S., 1950, In search of the engram, Symp. Soc. Exp. Biol., 4, 454–482.Google Scholar
  73. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., and Pitts, W. H., 1959, What the frog’s eye tells the frog’s brain, Proc. Inst. Radio Engrs., 47, 1940–1951.Google Scholar
  74. Levi-Montalcini, R., and Chen, J. S., 1969, In vitro studies of the insect embryonic nervous system, in “Cellular Dynamics of the Neuron” (S. H. Barondes, ed.), Academic Press, New York.Google Scholar
  75. Luco, J. V., 1971, A study of memory in insects, in “Research in Physiology” (F. F. Kao, K. Koizumi, and M. Vasalle, eds.), Aulo Gaggi, Bologna.Google Scholar
  76. Morrell, R., 1961, Effect of anodal polarization on the firing pattern of single cortical cells, Ann. N. Y. Acad. Sci., 92, 860–876.PubMedGoogle Scholar
  77. Moruzzi, G., and Magoun, H. W., 1949, Brain stem reticular formation and activation of the EEG, Elect roencephalogr. Clin. Neurophysiol., 1, 455–473.Google Scholar
  78. Olds, J., 1963, Mechanisms of instrumental conditioning, in “The Physiological Basis of Mental Activity” (R. Hernandez-Peon, ed.), American Elsevier, New York.Google Scholar
  79. Palka, J., 1969, Discrimination between movements of eye and object by visual interneurones of crickets, J. Exp. Biol., 50, 723–732.PubMedGoogle Scholar
  80. Peters, H., 1932, Experimente über die Orientierung der Kreuzspinne Epeira diademata Cl. im Netz, Zool. Jahrb. Abt., 51, 239–288.Google Scholar
  81. Pilowsky, I., Levine, S., and Boulton, D. M., 1969, The classification of depression by numerical taxonomy, Brit. J. Psychiatr., 115, 937–945.Google Scholar
  82. Pinsker, H., Kupferman, I., Castellucci, V., and Kandel, E., 1969, Habituation and dishabituation of the gill-withdrawal reflex in Aplysia, Science (Wash., D.C.), 167, 1740–1742.Google Scholar
  83. Pumphrey, R. J., and Rawdon-Smith, A. F., 1939. Synaptic transmission of nerve impulses through the last abdominal ganglion of the cockroach. Proc. Roy. Soc. Lond. Biol. Sci., 122, 106–118.Google Scholar
  84. Ranney Mize, R., and Murphy, E. H., 1973, Selective visual experience fails to modify receptive field properties of rabbit striate-cortex neurons, Science (Wash., D.C.), 180, 320–323.Google Scholar
  85. Rasch, E., Swift, H., Riesen, A. H., and Chow, K. L., 1961, Altered structure and composition of retinal cells in dark reared mammals, Exp. Cell Res., 25, 348–363.PubMedGoogle Scholar
  86. Ratner, S. C., 1972, Habituation and retention of habituation in the leech (Macrobdella decora), J. Comp. Physiol. Psychol., 81, 115–121.PubMedGoogle Scholar
  87. Razran, E., 1971, “Mind in Evolution—An East-West Synthesis of Learned Behavior and Cognition,” Houghton Mifflin, Boston.Google Scholar
  88. Roberts, M. B. V., 1962, The giant fibre reflex of the earthworm, Lumbricus terrestris L. I. The rapid response, J. Exp. Biol, 39, 219–227.Google Scholar
  89. Rosenzweig, M. R., Bennett, E. L., and Diamond, M. C., 1972, in “Macromolecules and Behavior” (2nd Ed.) (J. Gaito, ed.), Appleton-Century-Crofts, New York.Google Scholar
  90. Rowell, C. H. F., 1971, Variable responsiveness of a visual interneurone in the free-moving locust, and its relation to behavior and arousal, J. Exp. Biol, 55, 727–747.Google Scholar
  91. Rushforth, N. B., 1965, Behavioral studies of the coelenterate Hydra pirardi Brien, Anim. Behav., 13, Suppl. 1, 30–42.Google Scholar
  92. Rushforth, N. B., 1967, Chemical and physical factors affecting behavior in Hydra, in “Chemistry of Learning” (W. C. Corning and S. C. Ratner, eds.), Plenum Press, New York.Google Scholar
  93. Rushforth, N. B., 1973, Behavioral modification in coelenterate learning, in “Invertebrate Learning,” Vol. 1 (W. C. Corning, J. A. Dyal, and A. O. D. Willows, eds.), Plenum Press, New York.Google Scholar
  94. Rushforth, N. B., Burnett, A. L., and Maynard, R., 1963, Behavior in Hydra. Contraction responses ofHydra pirardi to mechanical and light stimuli; Science (Wash., D.C.), 139, 760–761.Google Scholar
  95. Schapiro, S., and Vukovich, K. R., 1970, Early experience effect upon cortical dendrites: A proposed model for development, Science (Wash., D.C.), 167, 292–294.Google Scholar
  96. Sluckin, W., 1965, “Imprinting and Early Learning,” Aldine, Chicago.Google Scholar
  97. Sokal, R. R., 1966, Numerical taxonomy, Sci. Am., 215, 106.Google Scholar
  98. Strauss, J. S., 1974, Classification by cluster analysis, in “International Pilot Study of Schizophrenia,” Vol. 1, in Press.Google Scholar
  99. Strauss, J. S., Bartko, J. J., and Carpenter, W. T., 1973, The use of clustering techniques for the classification of psychiatric patients, Brit. J. Psychiatr., 122, 531–540.Google Scholar
  100. Szlep, R., 1952, On the plasticity of instinct of a garden spider (Aranea diadema L.) construction of a cobweb, Acta Biol. Exp. (Warsaw), 16, 5–24.Google Scholar
  101. Thompson, R. F., and Spencer, W. A., 1966, Habituation: A model phenomenon for the study of neuronal substrates of behavior, Psychol Rev., 73, 16–43.PubMedGoogle Scholar
  102. Thorpe, W. H., 1939a, Further studies on olfactory conditioning in a parasitic insect. The nature of the conditioning process, Proc. R. Soc. Lond. Biol. Sci., 126, 379–397.Google Scholar
  103. Thorpe, W. H., 1939b, Further studies of pre-imaginal olfactory conditioning in insects, Proc. R. Soc. Lond. B. Biol. Sci., 127, 424–433.Google Scholar
  104. Von Burg, R., and Corning, W. C., 1970, Cardioregulatory properties of the abdominal ganglion in Limulus. Can. J. Physiol. Pharmacol. 45, 333–346.Google Scholar
  105. Vowles, D. M., 1961, Neural mechanisms in insect behavior, in “Current Problems in Animal Behavior” (W. H. Thorpe, and O. L. Zangwill, eds.), Harvard University Press, Cambridge.Google Scholar
  106. Wawrzynczyk, S., 1937, Badania nad pamieciaSpirostomum ambiguum major, Acta Biol. Exp. (Warsaw), 11, 57–77.Google Scholar
  107. Wickelgren, B. C., 1967a, Habituation of spinal motoneurons, J. Neurophysiol., 30, 1404–1423.PubMedGoogle Scholar
  108. Wickelgren, B. C., 1967b, Habituation of spinal interneurons, J. Neurophysiol., 30, 1424–1438.PubMedGoogle Scholar
  109. Wiersma, C. A. G., and Yanagisawa, K., 1971, On types of interneurons responding to visual stimulation present in the optic nerve of the rock lobster, Panulirus interruptus, J. Neurobiol., 2, 291–309.PubMedGoogle Scholar
  110. Willows, A. O. D., 1969, Neuronal network triggering a fixed action pattern, Science (Wash., D.C.), 166, 1549–1551.Google Scholar
  111. Wine, J. J., 1973, Invertebrate central neurons: Orthograde degeneration and retrograde changes after axotomy, Exp. Neurol., 38, 157–169.PubMedGoogle Scholar
  112. Wood, D. C., 1970a, Parametric studies of the response decrement produced by mechanical stimuli in the protozoan, Stentor coeruleus, J. Neurobiol, 1, 345–360.Google Scholar
  113. Wood, D. C., 1970b, Electrophysiological studies of the protozoan, Stentor coeruleus, J. Neurobiol, 1, 363–377.PubMedGoogle Scholar
  114. Wood, D. C., 1971, Electrophysiological correlates of the response decrement produced by mechanical stimuli in the protozoan, Stentor coeruleus, J. Neurobiol, 2, 1–11.Google Scholar
  115. Wood, D. C., 1972, Generalization of habituation between different receptor surfaces of Stentor, Physiol Behav., 9, 161–165.PubMedGoogle Scholar
  116. Zucker, R. S., Kennedy, D., and Selverston, A. I., 1971, Neuronal circuit mediating escape responses in crayfish, Science (Wash., D.C.), 173 645–650.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Lahue
    • 1
  • W. C. Corning
    • 1
  1. 1.Department of PsychologyUniversity of WaterlooWaterlooCanada

Personalised recommendations